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“Statistics are like bikinis.

What they reveal is suggestive,

but what they conceal is vital.”

Aaron Levenstein

“If you’re going to try,

go all the way.

Otherwise don’t even start.”

Charles Bukowski

Roll the dice





Abstract

Semantic Segmentation is a low level structured prediction task that

aims to correctly infer the semantic label of each pixel in an image.

Thanks to the breakthrough of Deep Learning, Semantic Segmenta-

tion gained a significant interests in particular applied to Autonomous

Driving.

Almost the totality of the state-of-the-art Semantic Segmentation

architecture uses Convolutional Neural Networks (CNNs). Due to the

limited size of the local receptive fields, CNNs can usually fail to cap-

ture spatially long-range dependence across different local areas of the

image. Although these networks have showed their excellent perfor-

mance for Image Recognition and Classification tasks [1], to correctly

modeling the contextual long-term dependencies between distant pixels

is crucial for Semantic Segmentation.

Recurrent Neural Networks (RNNs) have proved their ability to

modeling long-term dependences in several sequential prediction tasks

such as speech recognition and language understanding. In this work

we focused on ReSeg, a fully recurrent architecture proposed by Visin

et Al. [2] for object segmentation. Each recurrent layer consists of two

bidirectional RNNs that scan the image vertically and horizontally ex-

tracting both local and global features. The recurrent topology of the

network allows to learn long term spatial correlation and dependencies

between pixels in the image in the context of the entire image. We

performed a greedy procedure for hyper-parameter optimization, then,

we extensively tested the network on challenging urban scene parsing

datasets such as Camvid [3] and Cityscapes [4] showing comparable re-

sults to the state-of-the-art convolutional models. We further extended

the model combining both convolutional and recurrent layers, showing

that the convolutional-based models for Semenatic Segmentation actu-

ally benefit from the use of ReSeg layers.
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Sommario

La Segmentazione Semantica (Semantic Segmentation) è un tipo di

classificazione di basso livello che ha come obiettivo quello di predire la

categoria semantica a cui appartiene ogni pixel all’interno di un’immagine.

Negli ultimi anni, grazie ai numerosi sviluppi fatti nell’ambito del Deep

Learning, l’interesse nei confronti del problema di Semantic Segmenta-

tion ha subito un forte incremento, soprattutto nel contesto della guida

autonoma.

La maggior parte dei sistemi di Semantic Segmentation è basato

su Reti Neurali Convolutive (CNNs). Questo tipo di modelli ha di-

mostrato di raggiungere performace eccellenti nel problema di riconosci-

mento di immagini, ma non sono sempre in grado di apprendere corret-

tamente le dipendenze tra aree dell’immagine distanti fra loro. Questo

tipo di dipendenze è cruciale al fine di ottenere una buona segmen-

tazione.

Le Reti Neurali Ricorrenti (RNNs) hanno dimostrato di essere in

grado di modellare le dipendenze a lungo termine in numerosi problemi

di predizione sequenziale, quali riconoscimento vocale, comprensione

del linguaggio naturale o traduzione automatica. Il nostro lavoro è

basato sul modello ricorrente ReSeg proposto da Visin et Al. [2] per la

segmentazione di oggetti. Ogni layer ricorrente è formato da due RNNs

bidirezionali che scorrono l’immagine verticalmente e orizzontalmente

al fine di estrarre features sia locali che globali. Grazie alla sua topolo-

gia, la rete è in grado di apprendere le dipendenze spaziali tra i pixel

nel contesto dell’intera immagine.

In questo lavoro di tesi abbiamo utilizzato una procedura greedy al

fine di ottimizzare gli iper-parametri della rete e avere un primo grado

di sensibilità sulle capacità del modello. Successivamente abbiamo tes-

tato le performance della rete su dataset di segmentazione semantica

in ambito stradale come Camvid [3] e Cityscapes [4], ottenendo per-
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formance di stato dell’arte confrontabili con quelle dei ben più usati

modelli convolutivi.

Abbiamo inoltre esteso il modello combinando insieme livelli con-

volutivi e ricorrenti, dimostrando che i modelli convolutivi possono

beneficiare dell’introduzione di livelli ricorrenti incrementando cos̀ı le

performance di segmentazione.
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Chapter 1

Introduction

Since the introduction of the first computers, researchers have always

been attracted by the idea of creating a sort of Artificial Intelligence

(AI) that could help humans improve their lives.

Nowadays computers are still far from reaching the performance of

the human brain but AI systems are increasingly present in our day-

to-day life and help us making choices and solving many more tasks.

Voice assistants have become highly accurate in understanding hu-

man language and interacting with us by synthetic speech. Every time

we browse the web looking for something to buy, recommendation sys-

tems suggest us products, books or movies that we might like based

on our history. When we listen to a song by streaming, the music soft-

ware can create personalized playlists with songs of the same genre or

with similar rhythmic patterns. Facebook and Google released their

application to automatically recognize faces and tag people in our pho-

tographs. Microsoft integrated in Skype a system that is able to per-

form speech-to-speech translation from a language to another during

a voice call in real time, and recently DeepMind built AlphaGo [6], a

program that learned how to play Go from experience which even won

against the world champion.

All of these intelligent systems share the same general idea of trying

to mimic how our brain works. Just like during our life we see a lot of

examples and learn how to recognize faces, objects, or situations, the

modern AI systems use machine learning algorithms to build mathe-

matical models that try to reproduce the same abilities of our brain by

processing a huge amount of data samples and learning the underlined
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representation.

For instance, Computer Vision and Machine Learning focus to-

gether on how to make a machine able to develop a vision system that

understands the meaning of an image and solves many different tasks

such as Image Classification, Face Recognition, Object Detection and

ultimately Semantic Segmentation in order to replicate the abilities of

human vision and perception.

The performance of a machine learning system crucially depends on

the feature representations of the input data. Until few years ago most

of the machine learning methods relied on human-designed represen-

tations and inputs features. When machine learning is applied only to

these input features it becomes merely a matter of parameter optimiza-

tion in order to make the best final prediction. However handcrafting

features is time-consuming and features are often task specific so it’s

hard to use them for different application.

In the last years a new track of machine learning called Deep Learn-

ing focused on providing a way to automatically learn a feature rep-

resentation. The idea behind Deep Learning is indeed to learn a gen-

eral feature representation that can be exploited for different tasks

instead of building hand-engineered features that rely on fixed heuris-

tics. This can be done for example by stacking several layers of Neu-

ral Networks, each layer learns a more complex representation of the

data. For example Convolutional Neural Networks trained on images

learn similar levels of representations as the human brain where the

first layer learns simple edge filters, the second layer captures primi-

tive shapes and higher levels combine these to form objects. Therefore,

Deep learning can be seen as putting together Representation Learn-

ing with Machine Learning, attempting to jointly learn good features,

across multiple levels of increasing complexity and abstraction, and the

final prediction.

The breakthrough of Deep Learning had a strong impact on Ma-

chine Learning and in particular on Computer Vision, drastically ad-

vancing the state of the art of Image Understanding algorithms. This

opened new scenarios for a lot of computer vision applications: one of

most interesting and challenging is Autonomous Driving.

Autonomous Driving is a fascinating topic that blends together a

lot of tasks such as urban scene understanding, sensor fusion and path

planning in order to build a self-driving car that autonomously drives
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in the traffic. There is a significant hype on the possibility to build a

self-driving car. One of the first company that showed his interest in

building a self-driving car was Google. Then many car companies such

as Volvo, Tesla, BMW, Daimler, Mercedes-Benz and Toyota planned

to release their self-driving car by 2020, and also Baidu started its re-

search on Autonomous Driving collecting real traffic data to build its

own prototypes. Moreover NVIDIA is currently working with most of

these companies [7] in order to integrate its hardware in their vehi-

cles. Indeed, Autonomous Driving was the main topic of the NVIDIA

keynote at CES 2016, where it’s been presented the DriveNet neural

architecture and the new PX-2 GPU-based super-computer.

The most critical component to design in an autonomous vehicle is

a perception system that is able to understand all the stimulus coming

from the surrounding environment. For instance the perception system

must know how to recognize roads, sidewalks, buildings, traffic lights,

sign symbols, cars, pedestrians and all the objects or situations in the

scene with a degree of accuracy at least comparable with that of a

human driver. These systems usually acquire data from several camera

and depth sensors such as LIDAR, but most of the information is visual,

so much of the inference is done by computer vision algorithms.

The field of computer vision that focuses on this task goes under

the name of Scene understanding and it groups together different sub-

tasks of growing complexity such as Image or Scene Recognition, Ob-

ject detection and ultimately Semantic Segmentation in order to make

inference from the visual informations.

In particular Semantic Segmentation is a low level structured pre-

diction task that aims to correctly infer the semantic label of each pixel

in an image in order to classify each object in the scene. This kind of

task has acquired great importance in the last years in the context of

Autonomous Driving, in fact, semantically classifying each object in a

urban scene is a critical task in the design of a reliable autonomous car

that is able to safely drive in the traffic.

Thanks to the introduction of large annotated datasets collected

on real urban street environments such as KITTI [8], and the recently

released Cityscapes dataset [4] combined with the increasing computa-

tional resources given by the use of GPUs, feature learning with deep

neural networks has become the dominating technique for solving a

variety of computer vision tasks including Semantic Segmentation. Al-
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most the totality of these systems is built using Convolutional Neural

Networks (CNNs) which efficiently exploits the inherent structure of

the images.

CNNs have been adapted to perform semantic segmentation tasks

[9,10] and achieved state-of-the-art results, but they suffers a few lim-

itations in modeling the contextual dependencies in distant regions of

the image. Specifically, the receptive field of a neuron in the convolu-

tional layer usually corresponds only to a small fixed-sized local area

of the input image. However, in semantic segmentation, contextual

informations from distant areas of the image are usually crucial for a

correct prediction, and the context introduced by the local receptive

field is not enough.

Due to the limited size of the local receptive fields, CNNs usually

fails to capture such spatially long-range dependence across different lo-

cal areas of the image. In particular it’s hard to extract a good feature

representation to labeling pixels just by looking at a small neighboring

region. To overcome this issue the size of the receptive field is artifi-

cially adjusted to gradually cover the entire image by stacking several

convolutional and pooling layers, resulting in an implicit but ineffective

way of modeling long-range dependencies.

Although these networks have showed their excellent performance

for Image Recognition and Classification task, modeling correctly the

contextual long-term dependencies between distant pixels is crucial for

Semantic Segmentation. In fact, the semantic category of a pixel may

depend on relatively short-range information (e.g., the presence of eyes

in a human face generally indicates the presence of a nose nearby), but

may also depend on long-range information. For example, identifying

a grey pixel as belonging to a road, a sidewalk, a gray car, a concrete

building, or a cloudy sky requires a wide contextual window that shows

enough of the surroundings to make an informed decision.

Recurrent Neural Networks (RNNs) have proved their ability to

modeling long-term dependences in several sequential prediction tasks

such as speech recognition and language understanding. Nevertheless,

RNNs are relatively new and not fully explored in the context of image

understanding. A recent work on this topic is the ReNet architecture

[11] that has been initially proposed as an alternative to the widely used

Convolutional Neural Networks to perform object classification. Each

ReNet layer is made of two bidirectional recurrent neural networks that
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scan the image vertically and horizontally in order to extract both local

and global features. The recurrent topology of the network allows to

learn long term spatial correlation and dependencies between pixels in

the image, not only in a fixed size window such as classical CNNs, but

possibly in the context of the entire image. This is critically important

to task such semantic segmentation.

In this work we focused on the ReSeg architecture proposed by

Visin et Al. [2] for object segmentation. Starting from their work we

extended the ReSeg architecture to address multi-class semantic seg-

mentation and we performed a greedy procedure for hyper-parameter

optimization in order to have a first understanding of the strengths

and the weaknesses of the model. We implemented the ReSeg architec-

ture using Lasagne [12], a lightweight library to build and train neural

networks in Theano [13]. Then, we extensively tested the network on

challenging urban scene parsing datasets such as Camvid [3], Daim-

ler [14] and the recently released Cityscapes [4] showing comparable

results to the state-of-the-art of convolutional models.

• In the next chapter we give a theoretical background on the Deep

Learning models focusing on the most used artificial neural archi-

tecture.

• In Chapter 3 we explain the task of Semantic Segmentation and

discuss the issues that are involved. Moreover we give an overview

of the datasets and the state of the art methods used for urban

scene understanding.

• In Chapter 4 we present the ReSeg model and we describe in

details each component of the architecture.

• In Chapter 5 we describe the design of the experiments and we

show the experimental results that we obtained.

• Finally, in the last chapter, we resume our work and discuss some

possible future developments and improvements.
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Chapter 2

Deep Learning Models

This chapter gives a theoretical background on the main deep neural

architectures. After introducing classic Feedforward Neural Networks

we discuss more complicated models called Convolutional Neural Net-

works that are widely used in Computer Vision tasks. Then we focus

on Recurrent Neural Networks that are the main topic of this thesis.

2.1 Introduction

Machine Learning is a field of research in Artificial Intelligence which

studies how to build algorithms that are able to learn from experience

how to perform a specific task without being explicitly programmed.

Usually this kind of tasks imply some degree of intelligence and are too

difficult to solve with fixed programs designed by humans. Machine

Learning tries to tackle these problems by building a mathematical

model from examples input in order to make data-driven predictions

or decisions and solve the given task. Let’s consider for example the

task of recognizing a visual concept, this is relatively trivial for a hu-

man being to perform because he learned how to do it observing a huge

amount of examples since his early days of life. Machine Learning mim-

ics the human process of Learning in order to give to the computer the

ability to perform complex tasks by means of experiences and observa-

tions.

Depending on the kind of experience that is available during the

learning process, Machine Learning algorithms are typically classified

into three broad categories:

Supervised learning : each observation is a tuple < x, y > which
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contains the input vector of features x and the associated target or

label y. The goal is to learn a general rule that maps input into

output. The term supervised learning originates from the view of

the target y as being provided by an “instructor” or “teacher” who

shows the machine learning system what to do.

Unsupervised learning : no labels are associated to the input fea-

tures. Unsupervised learning aims to discover hidden patterns in

data dividing the dataset into clusters of similar examples.

Reinforcement learning : no input and/or output data are pro-

vided and the reinforcement learning algorithm interacts with the

environment so there is a feedback loop between the learning system

and its experiences. The goal is to learn which actions to perform in

the given state of the environment in order to maximize a numerical

reward signal. The learning algorithm is not told which actions are

better to take in some situation and it must discover which actions

yield the most reward by trying them.

Unsupervised and Reinforcement learning algorithms are out of the

scope of this work. In this thesis we will focus only on the supervised

learning paradigm, specifically on a family of Machine Learning models

called Artificial Neural Networks.

Artificial Neural Networks, or more simply Neural Networks, are

nonlinear models that are used for function approximation. Given a

generic function y = f(x) the goal of a neural network is to estimate

the best parameters θ which approximate the function minimizing a

proper performance index which depends on the task to be performed.

The performance function evaluates the error between the target value

y = f(x) and the approximation given by the model f ∗(x; θ).

Depending on the task to be performed, the algorithm learns a

specific function. For example in a Classification task the computer

program is asked to specify among k categories which one the input

belongs to. In this case the learning algorithm has to produce a func-

tion f : Rn → {1, · · · , k} that maps the input space of features into the

discrete output space of the classes. Other tasks usually require to pre-

dict a numerical value performing a Regression, so the input output

mapping in this case will be a vector to scalar function f : Rn → R.
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2.2 Feedforward Neural Networks

Before talking about more complicated and specialized models such as

convolutional and recurrent neural networks, it is useful to introduce

and briefly describe the basics of artificial neural networks.

The research area of Neural Networks has originally been inspired

by the goal of modeling biological neural systems, however modern

Neural Network research is currently guided by mathematics, statis-

tics and engineering disciplines and its goal is not to model the brain

anymore. As stated before, it is better to think of neural networks as

function approximation tools designed to achieve statistical generaliza-

tion, sometimes inspired by neuroscience rather than as models of a

brain function.

The artificial neuron has been presented in 1957 by Rosenblatt with

the name of Perceptron [15] as a supervised binary classifier that learns

whether an input belongs to one class or another. Although the Per-

ceptron initially seemed promising, it was quickly proved that could’t

be trained to recognize many classes of patterns. In a famous book en-

titled “Perceptrons” published in 1969, Marvin Minsky and Seymour

Papert showed that it is impossible for these kind of models to learn a

XOR function and they are only capable of learning linearly separable

patterns.

This led to the field of neural network research stagnating for many

years, before it was recognised that more layers of perceptron can be

stacked together in a feedforward neural network (also called a Multi-

layer Perceptron) and trained with the backpropagation algorithm [16].

These models are called feedforward because their topology is defined

so that information flows from x, through the intermediate computa-

tions used to define f , and finally to the output y. There are no feedback

connections in which function being evaluated from x, through the in-

termediate computations used to output of the model are fed back into

itself.

The name networks comes from the fact that their representation

is typically given by a the composition of many different functions and

the model can be described by a directed acyclic graph (DAG) which

represents how the functions are composed together. Neural Network

models are organized into distinct layers of many units that act in

parallel representing a vector to scalar function. Each unit resembles

a neuron in the sense that it receives input from many other units and
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(a) (b)

Figure 2.1: An example of a Feedforward fully connected neural network with one and

two hidden layers

computes its own activation value. Let’s take for example three func-

tions f (1), f (2), f (3) connected in a chain form f(x) = f (3)(f (2)(f (1)(x))).

Each function is a layer of the model and the overall length of the chain

gives the depth of the model.

Given a vector of features x ∈ Rn as input, a neural network trans-

forms it through a series of hidden layers into a new representation that

is more suitable for the task to be performed by the system. Each ex-

ample of the training dataset is given by a pair (xi,yi), specifying the

behavior of the output layer associated to each input sample. However

the behavior of the other layers is not directly specified by the training

data. The learning algorithm must decide how to use the intermediate

layers to produce the desired output but the training data does not say

anything on what each layer should do.

Since the training data does not show the desired output for each of

the intermediate layers, these are called hidden layers. The term “deep

learning” comes from this procedure of stacking many layers together

and train them jointly. A key point in designing deep architectures is

the choice of the topology to connect these layers to each other.

A typical fully connected neural network layer is described by a lin-

ear transformation via a matrix W and every input unit is connected to

every unit of the next layer. However, many specialized networks have

fewer connections, so that each unit in the layer is connected to only a

small subset of units in the next layer. Reducing the number of connec-

tions reduces the number of parameters, the amount of computation

required to evaluate the network, and also the risk of incur in overfit-

ting, but these type of architectures are often highly task-dependent.

For example, as we will see in the next section, convolutional networks
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use particular patterns of sparse connections that are very effective for

computer vision problems. For regular neural networks, the most com-

mon layer type is the fully connected layer (see Figure 2.1) where every

neuron of each layer is connected to every neuron of the adjacent layer

and there are no connections between units of the same layer. Each

neuron returns a nonlinear combination of its input as follows:

oj = σ(
∑

i

wi,jxi,j). (2.1)

In other words, each neuron performs a dot product with the input

and its weights, adds the bias and applies the non-linearity (or acti-

vation function). The choice of the activation function σ(·) is some-

times loosely guided by neuroscientific observations of the biological

neurons. This type of structure is called Fully-connected Feedforward

Neural Network and became very popular after the introduction of the

backpropagation learning algorithm by Rumelhart et. al [16].

Formally, a feedforward neural network with l hidden layers is pa-

rametrized by l+ 1 weight matrices (W0, . . . ,Wl) and l+ 1 bias vectors

(b0, . . . , bl) that are trained by means of an optimization algorithm

which minimizes a proper error function.

Why Deep Neural networks?

Despite its biological interpretation, an artificial neural networks is

just a universal function approximator. More rigorously the universal

approximation theorem states that a feedforward neural network with

a single hidden layer can approximate any measurable function to any

desired degree of accuracy on a compact set [17].

It means that regardless of what function we are trying to learn,

a large enough MLP will be able to represent it. However, it is not

guaranteed that the training algorithm will be able to learn that func-

tion. Even if the MLP is able to represent the function, the learning

procedure can fail because of overfitting or because the optimization

algorithm used for training may not be able to find a good value of the

parameters to approximate the desired function.

Some bounds on the size of a single-layer network that would be

needed to approximate a broad class of functions have been provided

by Barron (1993) but unfortunately, in the worse case, an exponential

number of hidden units may be required. In summary, a feedforward
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network with a single layer is sufficient to represent any function, but

the layer may have to be infeasibly large and may fail to learn and

generalize correctly.

In many cases, using deeper models can reduce the number of units

required to represent the desired function and it can reduce the gen-

eralization error. Deep learning is based on the evidence that a deep,

hierarchical model can be exponentially more efficient at representing

some functions than a shallow one [18]. Several recent theoretical re-

sults support this hypothesis (see, e.g., [19] Delalleau and Bengio, [20]

Pascanu et al., [21]); Indeed, there exist families of functions which

can be approximated efficiently by an architecture with depth greater

than some value d, but that would require a much larger model when

depth is restricted to be less than or equal to d. In many cases, the

number of hidden units required by a shallow model is exponential in

n. There are several empirical evidences supporting this hypothesis

(e.g., Hinton et al., [22, 23]), for instance, it has been shown by De-

lalleau and Bengio [20] that a deep sum-product network may require

exponentially less units to represent the same function compared to a

shallow sum-product network.

This suggests that using deep architectures does indeed express a

useful prior over the space of functions the model learns. In fact choos-

ing a deep model encodes a very general belief that the function we

want to learn should involve composition of several simpler functions.

This can be interpreted from a representation learning point of view

as saying that we believe the learning problem consists of discovering

a set of underlying factors of variation that can in turn be described in

terms of other, simpler underlying factors of variation [24].

2.2.1 Training a neural network

Designing a feedforward network requires taking the same design de-

cisions that are necessary for any other machine learning models. In

particular we have to choose:

• The optimizer

• The cost function (and any eventual regularization term)

• The kind of hidden units

• The kind of the output units
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• The activation functions

• The initialization policy of the parameters

• The topology of the network

In general, we call hyperparameter every choice we have to make

in the design of the architecture of the network, including how many

layers the network should contain (the depth), how many units should

be in each layer (the width) and how these units should be connected

to each other (the topology), the activation function of each hidden

layer.

Gradient based learning

Once we have decided all the hyperparameters, we have to train the

model. Neural networks are usually trained by using iterative, gradient-

based optimization methods that try to drive the cost function to very

low values. Unfortunately nonlinearities and high dimensionality cause

the cost function to be highly non convex and make the optimization

very hard in practice. For this reasons many variants of the classic

gradient descent algorithm have been proposed. Usually these methods

are improvements and refinements of the well known stochastic gradient

descent (SGD) algorithm. The SGD algorithm is an approximation of

the classic gradient descent algorithm that uses an estimate of the

gradient of the loss function based only on a single example of the

training set. A compromise between computing the true gradient and

the gradient at a single example, is the “mini-batch” extension which

computes the gradient on more than one training example at each step.

Optimization for deep networks is currently a very active area of

research. New optimization methods have been proposed [25, 26], to

try to ameliorate the performance of the stochastic gradient descent

using adaptive learning rates and second-order curvature informations

such as Quasi-Newton methods.

Initially it was commonly thought that simple gradient descent

would get stucked in poor local minima and suboptimal weights config-

urations, but in practice local minima are rarely a problem with large

networks. Regardless of the initial conditions, the system nearly always

reaches solutions of very similar quality. Recent theoretical and empir-

ical results [27] strongly suggest that the difficulties of training deep
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Figure 2.2: Illustrations of two different types of saddle points (a-b) plus a gutter

structure (c) where the shape of the function is that of the bottom of a bottle of wine.

This means that the minimum is a “ring” instead of a single point. [27]

neural networks originates from the existence of saddle points and not

local minima. In fact, the cost function is full of saddle points where

the gradient is zero, the surface curves up in most dimensions and

curves down in the remainder. This dramatically slow down learning,

and give the illusory impression of the existence of a local minimum.

Different types of saddle points are showed in Figure 2.2.

It is also important to choose a robust initialization method for the

parameters of the network in order to help the optimization algorithm

to rapidly converge to a good solution. Many approaches have been

proposed depending on the activation of the hidden units [28, 29].

Back-Propagation algorithm

The backpropagation algorithm provides an efficient and exact way of

computing the gradient of the cost function in order to train a neural

network.

We can think of training a neural network as two separate phases.

In a feedforward neural network the information flows forward from the

input layer passing through the hidden units and producing the output

prediction ŷ. This is called forward propagation. After the forward

pass the cost function J(θ) is evaluated and the training algorithm

iteratively updates the parameters of the network. In order to minimize

the cost we need to compute the gradient of the cost function with

respect to the parameters. The backpropagation algorithm allows the

information given by the cost to flow backwards through the network

in order to computer the gradients.

The Backpropagation algorithm is a gradient-based learning method
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that minimizes a proper error function looking at the direction of the

gradient. The weights are learned propagating back through all the

layers of the network the prediction error. At each step the algorithm

updates each weight of a quantity proportional to gradient of the error

function with respect to the weight. A general updating rule for the

weights of the network can be written as follows:

w← w − α∂J(θ)

∂w
(2.2)

where w is the vector of weights, J(θ) is the error function, and α is

the learning rate.

Since the output is given by a composition of non linear functions it

is sufficient to apply several times the classic chain rule to compute the

gradients. Let x be a real number , and two functions f : R→ R and

g : R → R. Now consider the composite function z = f(g(x)) = f(y),

where y = g(x). Then the derivative of f with respect to x can be

computed applying the chain rule as follows:

dz

dx
=
dz

dy

dy

dx
(2.3)

Once the gradient of the cost function is computed, the gradients are

used to perform the parameters update.

Cost functions

An important aspect of the design of a deep neural network is the choice

of the cost function. In the case of classification task the model defines a

distribution p(y|x; θ) over a set of classes and we can use the principle of

maximum likelihood to estimate the parameters. This means using the

cross-entropy cost function to measure the error between the training

data and the model’s predictions.

J(θ) = − 1

N

∑

i

f(xi; θ) log(yi). (2.4)

If the output of the function are real numbers we are estimating

the parameters for a regression task and the usual choice for the cost

function is the classic Mean Squared Error.

J(θ) =
1

N

∑

i

(yi − f(xi; θ))
2. (2.5)
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Output units

Considering a feedforward neural network, the input passes through

several hidden layers and is transformed in a new feature representation

h = f(x, θ). The output layer provides a last additional transformation

to complete the task the network must perform. The choice of the cost

function is tightly coupled with the choice of the output unit.

One of the simplest kind of output is based on an affine transfor-

mation with no nonlinearity. The are often just called linear units.

Given features h, a layer of linear output units produces a vector

y = WTh + b. Linear output layers are often used to produce the

mean of a conditional Gaussian distribution. In a maximum likeli-

hood framework in fact maximizing the log-likelihood is equivalent to

minimizing the mean squared error.

For binary classification tasks the classic approach is based on using

sigmoid output units combined with maximum likelihood. We can

think of the sigmoid output unit as having two components. First, it

uses a linear layer to compute z = wTh + b. Next, it uses the sigmoid

activation function to convert z into a probability.

ŷ = σ(wTh + b) (2.6)

This comes from the fact that in the case of binary variable, we

wish to produce a single number

ŷ = P (y = 1|x) (2.7)

Usually the log-likelihood z = log P̃ (y = 1|x) is used instead, in order

to avoid numerical problems due to the fact that the probabilities are in

the [0, 1] range. Exponentiating and normalizing we obtain a Bernoulli

distribution controlled by the sigmoid function.

Any time we wish to represent a discrete probability distribution

over k possible outcome, we may use the Softmax function. Softmax

functions are used as output of a classifier to normalize in the probabil-

ity range. This can be seen as a generalization of the sigmoid function

which was used to represent a Bernoulli distribution. In this case we

need to produce a vector ŷ, with ŷi = P (y = i|x), where each element

ŷi need to be between 0 and 1 and they are constraint to sum to 1 in

order to represent a valid probability distribution. The same approach

that work for the Bernoulli distribution generalizes to the Multinomial
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distribution. First, a linear layer is used to predict unnormalized log

probabilities

z = WTh + b, (2.8)

where zi = log P̃ (y = 1|x). The softmax function can be then expo-

nentiate and normalize z to obtain the desired output ŷ. So formally

the softmax function is given by

softmax(z)i =
exp(zi)∑
j exp(zj)

, (2.9)

Hidden units

The design of hidden units is a very active area of research. In the

last years several nonlinear activation functions have been proposed

aiming to improve the performances and trying to make simpler the

optimization process.

Currently the most popular activation function for neural networks

is the Rectified Linear Unit (ReLU), which was first proposed for re-

stricted Boltzmann machines by Nair & Hinton [30] and then success-

fully used for neural networks [31–33] . The ReLU activation function

is linear with slope 1 for positive arguments and zero otherwise, that

is, for positive values it is the identity and for negative values the zero

function, g(z) = max{0, z}. Typically a rectified hidden unit is used on

top of an affine transformation h = g(WTx + b). The main advantage

of ReLUs is that they avoid the vanishing gradient problem [34] since

their derivative is 1 for positive values and 0 elsewhere. A detailed

description of the vanishing gradient problem is given in section 2.4.1.

Several generalizations of rectified linear units exist, most of these

perform comparably to rectified linear units and occasionally perform

better. Recently Leaky ReLUs (LReLUs) have been proposed, which

replace the negative part of the ReLU with a linear function fixing the

slope αi to a small value like 0.01 [35]. Leaky ReLUs have been shown to

be superior to ReLUs in terms of learning speed and performance [36].

They have later been generalized to Parametric Rectified Linear Units

(PReLUs) [29] which treat the slope of the negative part αi as a learn-

able parameter. Another version of leaky ReLUs are Randomized Leaky

Rectified Linear Units (RReLUs), where the slope of the negative part

is randomly sampled [36]. Recently also an Exponential Linear Units

(ELU) have been presented [37], the hyperparameter alpha controls

the value to which an ELU saturate for negative net input.
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(a) Sigmoid unit (b) Tanh unit (c) ReLu unit

Figure 2.3: Illustrations of different types of activation functions: Sigmoid non-linearity

(a) squashes real numbers to range between [0, 1]. Tanh non-linearity (b) squashes real

numbers to range between [−1, 1]. Rectified Linear Unit (ReLU) activation function is

zero when x < 0 and then linear with slope 1 when x > 0

.

Before the introduction of rectified linear units, most neural net-

works used the logistic sigmoid activation function g(z) = σ(z) or the

hyperbolic tangent activation function g(z) = tanh(z). These two ac-

tivations are closely related by the fact tanh(z) = 2σ(2z) − 1. Unlike

linear units, sigmoidal units saturate to a high value when their input

is very positive and saturate to a low value when the input is very neg-

ative. This makes them operative only in a very narrow range around

zero making the gradient-based learning very hard. For this reason

they have been substituted by other kind of hidden units in feedfor-

ward networks. Nowadays they are mostly used as output units or in

other settings like in Recurrent Neural Networks or autoencoders.

More specialized types of hidden units which address several issues

in Recurrent Neural Networks are discussed in the sections below.

2.3 Convolutional Neural Networks

Fully-connected neural network showed to work well in a lot of fields

but they are not really used in practice for image recognition tasks. To

understand the motivation behind that, let’s take as example an image

of size 32 × 32 × 3, a single fully connected neuron in the first layer

would have 32 ∗ 32 ∗ 3 = 3072 weights. Clearly this kind of structure

doesn’t scale well with larger images.

Using this kind of network for image classification causes the num-

ber of parameters to rapidly explode making hard to train the network.

Considering a bigger image with a more common size e.g. 640×480×3,

this would lead to neurons that have 640 ∗ 480 ∗ 3 = 921, 600 weights.
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Clearly this kind of full connectivity is wasteful and the huge number

of parameters would quickly lead to overfitting.

Besides these important facts there is another reason that motivates

the use of a different model for image-based tasks: a fully-connected

neural network does not take into account the inherent spatial structure

of an image, it treats input pixels which are far apart and close together

in exactly the same way.

Convolutional Neural Networks (CNNs or ConvNets) use a special

architecture that exploits the spatial structure of the images. More in

general these kind of neural networks are specialized in processing data

that has a grid-like topology such as time-series (1D grid) or images (2D

grid) [24]. In particular, a Convolutional network is a neural network

that instead of using a matrix multiplication uses convolution operation

to compute the activation of a layer.

The use of convolution is motivated by the fact that it leverages

three key ideas: sparse interaction, parameter sharing and equivariant

representations. In a fully-connected neural network we have a full in-

teraction between the units of each layer, which means that each input

pixel is connected to each hidden unit of the adjacent layer. Convolu-

tional Neural Networks use sparse interaction (or sparse connectivity),

which means that each neuron in a hidden layer is connected only to

small localized regions of the previous layer. These regions are called

receptive fields. The space between each receptive field is called stride.

Choosing a stride equal to 1 the receptive fields are side by side but we

can also have overlapped receptive field with a stride less than 1, or we

can skip some input units choosing a stride greater than 1. The latter

case correspond to perform a downsample operation. See the Figure

2.4 for a visual representation.

The second important property is parameter sharing, it refers to the

fact that the network uses the same weights and bias for each location

of its input it is applied to. We can also say that the network has tied

weights, because the value of a weight applied to one location is tied to

the value of a weight applied elsewhere. In practice rather than learning

a separate set of parameters for every region, we learn only one set.

Parameter sharing is used in convolutional layers to control the number

of parameters, in fact, it is possible to reduce the number of parameters

making the reasonable assumption that one patch feature is useful no

matter what is its location in the image. Thanks to parameter sharing
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(a) Stride = 1 (b) Stride = 2

Figure 2.4: Examples of two kind of sparse connectivity in 1-dimension: each output

unit is affected by a subset of the hidden units. We can also interpret interaction in

the opposite sense where each hidden unit affect only a subset of the output units.

The neuron weights in this example are [1,0,-1] and the bias is zero. These weights are

shared across all yellow neurons using the parameter sharing property.

different neurons share the same weights, this allows the output of a

convolutional layer to be implemented as a convolution of the weights

with the input. The map from the input layer to the hidden layer is

called feature map, and the shared weights and bias are often referred

as kernel or filter.

The network structure described so far can detect just a single kind

of localized feature, but, in order to use it for tasks such as image

recognition, it is necessary to detect more than one feature. Every

layer of a ConvNet transforms an input volume into an output volume

of neuron activations where each slice of the output volume is a feature

map. The structure is depicted in Figure 2.5.

In the case of convolution, parameter sharing causes the layer to

have an important property for images that is called equivariance to

translation. In particular we say that a function f(x) is equivariant

to a function g(·) if f(g(x)) = g(f(x)). The convolution operator is

equivariant to any function g(·) that translates the input. For example,

let I be a function giving the intensity of each pixel of an image, and

let I′ = g(I) a function mapping one image function to another image

function such that I′(x, y) = I(x − 1, y) that shift every pixel of I one

unit to the right. Applying this transformation to I and then apply the

convolution will produce the same result as applying the convolution

to I and then the transformation g(·) to the output of the convolution.

The intuition behind equivariance to translation is that the con-

volution creates a map of where certain features appear in the input.

Moving the object in the input, its representation will move the same
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Figure 2.5: In red we can see an example input image 32x32x3, and an example volume

of neurons in the first Convolutional layer in blue. Each neuron in the convolutional layer

is connected only to a local patch in the input. The neurons of the Neural Network

remain unchanged, they still compute a dot product of their weights with the input

followed by a non-linearity, but their connectivity is now restricted to be local spatially.

amount in the output. This is important for tasks such as image recog-

nition where the same local feature is useful everywhere in the input.

For example, it is useful that the network learns a robust edge detector

because the same edges appear more or less everywhere in the image.

However, we can have some cases in which we may not wish to share

parameters across the entire image. For example, in face recognition

tasks we want to extract different features at different locations of the

image, and the part of the network processing the top of the face needs

to look for the eyes, while the part of the network processing the bottom

of the face needs to look for the mouth etc.

Convolution is not naturally equivariant to some other transforma-

tions, such as changes in the scale or rotation of an image. Other

mechanisms are necessary for handling these kinds of transformations.

Pooling

A typical ConvNet architecture consists in a pipeline of three opera-

tions: convolution, a nonlinear transformation and pooling. First of all

the ConvNet computes several parallel convolutions to produce a set of

feature maps or pre-activations. In the second stage a nonlinear activa-

tion function, such as the rectified linear activation (ReLU) is applied

to the feature maps. At last it is common to insert a pooling layer

in-between successive convolutional layers in a ConvNet architecture.
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(a) Downsampling (b) Max-pooling

Figure 2.6: A pooling layer downsamples the volume spatially, independently in each

depth slice of the input volume. In this example, the input volume of size [224x224x64]

is pooled with filter size 2, stride 2 into output volume of size [112x112x64]. Notice

that the volume depth is preserved. Figure (b) shows a 2x max pooling operation where

each max is taken over 4 numbers on a patch of dimension 2x2.

The important fact behind the use of pooling is that helps to make

the representation invariant to small translation of the input. To pro-

vide invariance to local translation it also has the effect of progressively

reducing the spatial size of the representation to reduce the amount of

parameters and computation in the network, and hence to also control

overfitting. The pooling layer operates on every slice of the convolu-

tion output and resizes it spatially, using an aggregate operation like

the Max function as shown in Figure 2.6. In addition to max pooling,

the pooling units can also perform other functions, such as average

pooling or L2-norm pooling. Invariance to local translation is very

useful when we do not need to know the exact position of a feature,

but we just need to know that is in a given region. For example, when

determining whether an image contains a face, we do not need to know

the location of the eyes with pixel-perfect accuracy, we just need to

know that there is an eye on the left side of the face and an eye on the

right side.

The use of pooling can be also viewed as adding an infinitely strong

prior that the function that the layer must learns is invariant to small

translations [24]. The correctness of this assumption can greatly im-

prove the statistical efficiency of the network.

A prior is a probability distribution over the parameters of a model

that encodes our beliefs about the reasonable models before having

seen any data. Priors can be weak or strong depending on how concen-

trated the probability density is. A weak prior is a distribution with



Chapter 2. Deep Learning Models 23

high variance, which allows the parameters to vary more or less freely.

A density probability with low variance is instead a prior that imposes

some strong constraints on the parameters. An infinitely strong prior

places zero probability on some parameters and says that these param-

eters value are completely forbidden, regardless of how much support

the data gives to those values.

Implementing a convolutional network as a fully connected network

with an infinitely strong prior would be an extreme waste of compu-

tation, but this analogy is useful to give us some insights into how

convolutional nets work.

2.4 Recurrent Neural Networks

Convolutional Neural Networks proved their ability to learn a general

hierarchical feature representation in many contexts and are currently

the first choice for many computer vision tasks such as Image Recogni-

tion [38, 39], Object Detection or Video Analysis [40]. This is possible

thanks to the inherent grid structure of the input data that can be

efficiently exploited by these networks through a series of layers of

learnable filters.

It often occurs that data examples share a form of sequentiality

that have to be considered. A natural choice when we have to handle

sequential data is to use Recurrent Neural networks. Several sequential

machine learning tasks can be taken into account using RNNs: Im-

age Captioning [41], Speech Synthesis and Recognition [42–45], Music

Generation and Transcription [46,47], time-series prediction, and Nat-

ural Language Translation [48]. All of these tasks have in common a

translation from a signal to another by processing sequential data.

Recurrent neural networks are an extension of feedforward neural

networks, augmented with the ability to pass information through re-

current edges that span adjacent samples, introducing a notion of se-

quentiality to the model. Adding cycles to the network means adding

dynamics to the system and enhance the expressive power of the model.

The structure of a recurrent neural network is very similar to that of

the standard multilayer perceptron, where we add feedback connections

to the hidden units. Through these connections the model can retain

information about the past, enabling it to discover correlations between

events that are far away from each other in the data.
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These dependencies generate a context that cannot be taken into

account by classical neural networks because of their simple structure.

Feedforward neural networks are in fact memoryless models that rely

on the assumption of independence among the data points. Recurrent

Neural Networks are feed-back neural networks naturally designed for

modeling contextual dependencies. Because of the connections from the

previous states to the current ones RNNs have memory. Through such

feedback connections, RNNs are able to retain information of the past

input, and to discover correlations among the input data that might

be far away from each other in the sequence. The concept of context

is very important in many fields and it is the reason why Recurrent

Neural Networks are preferred when the instances of input data are

not independent from each other, but rather they are correlated to the

nearby ones.

We can formalize a simple recurrent neural network with one hidden

layer exactly how we did for the feedforward neural network. Although

we consider the notion of time to define recurrent networks, we have to

notice that we can refer to any kind of data sequentiality (e.g., spatial).

The general formulation of an RNN at time step t is a function of the

state at time t− 1 and the current input ut:

xt = F (xt−1,ut; θ) (2.10)

Specifically we can use the following parametrization:

xt = σ(Wrecxt−1 + Winut + b), (2.11)

where the parameters of the model are the recurrent weight matrix

Wrec, the bias b and the input weight matrix Win, collected in θ for

the general case in showed in Equation 2.10. The initial state x0 can

be provided, set to zero or learned, and σ is an element-wise function.

Feedforward neural networks are universal function approximators

[17] but RNNs are way more powerful. Siegelman and Sontag [49]

proved that a finite sized recurrent neural network with sigmoidal acti-

vation functions can simulate a universal Turing machine. Specifically,

any function computable by a Turing machine can be computed by a

recurrent network of a finite size, in other words an RNN is Turing-

complete.

A simple way to visualize the dynamics of a recurrent neural net-

work across time steps is to unfold the network. The model can be
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Figure 2.7: An unrolled recurrent neural network.

interpreted not as cyclic, but rather as a deep feedforward network

with one layer per time step and tied weights across time steps. The

unfolded network can be trained across many time steps using the

backpropagation algorithm presented with the name of backpropaga-

tion through time (BPTT), in 1990 by Werbos [50].

Unfolding RNNs takes advantage of the concept of parameter shar-

ing, in fact the weights are shared across different instances of the

artificial neurons, each associated with different time steps. This al-

lows to generalize to sequences of different lengths because the same

weights are re-used at each time step. The core idea is that it is not

important the absolute time step at which an event occurs, but it only

makes sense to consider the event in some context that somehow cap-

tures what happened before. Once unfolded, recurrent neural networks

can be trained end-to-end with backpropagation considering them like

deep feedforward neural networks with an unbounded number of layers.

However training a deep network is not an easy task because of two

problems that occur during the learning process: the vanishing and

exploding gradient problems.

2.4.1 Vanishing and exploding gradient problems

The main reason that makes RNNs so appealing is the fact that they

can use their feedback connections to learn dependencies between data

and connect input events at different times.

In a classical sequential learning task we often only need to look

at recent information to perform the present prediction. For example,

consider a language model trying to predict the next word based on

the previous ones, RNNs can be train to use the past information to

solve this task. When the distance of the relevant information needed

for the prediction is small, RNNs can learn to use the past information.

But there are also cases where we need more context. Unfortunately,
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as that gap grows, RNNs become unable to learn how to connect past

and present informations. Theoretically, thank to the internal state,

the network can remember things for a long time. In principle, the

internal state can carry information about a potentially unbounded

number of previous input, but in practice training a recurrent network

to properly store information that’s not needed for a long time can be

especially hard.

RNNs are capable of handling such “long-term dependencies” but

are not able to learn the right weight parameters with conventional

Back-Propagation Through Time (BPTT) [50] as explored by Hochre-

iter in [51] and then extensively studied by Bengio and Frasconi in [34]

analyzing the problem of vanishing and exploding gradients. The Back-

Propagation Through Time algorithm is applied to a very deep un-

folded version of the recurrent network. This means that the error

needs to be back propagated trough many layers. Due to the appli-

cation of the chain rule, the gradient of the error function is given by

the multiplication of several terms and this can cause the gradient to

rapidly vanish to zero or even to explode making impossible to effec-

tively train the network.

Indeed, let’s define a cost function E =
∑T

t=1 Et that measures the

performance of the network on some given task, where Et = loss(xt).

Following [52], we can explicitly compute the gradient of the cost func-

tion to highlight the problems that occur during the training:

∂E
∂θ

=
T∑

t=1

∂Et
∂θ

(2.12)

∂Et
∂θ

=
t∑

k=1

(
∂Et
∂xt

∂xt
∂xk

∂x+
k

∂θ

)
(2.13)

Equation 2.12 consists of unfolding the RNN and summing the gra-

dients of the errors at each time step. Any gradient component ∂Et
∂θ

is also a sum of several temporal components. Each of these temporal

contributions ∂Et
∂xt

∂xt

∂xk

∂x+
k

∂θ
measures how θ at step k affects the cost at

step t > k.
∂x+

k

∂θ
refers to the immediate partial derivative of the state

xk with respect to θ where xk−1 is taken as a constant with respect to

θ.

The factors ∂xt
∂xk

in Equation 2.13 transport the error “in time” from

step t back to step k. Considering now the generic parametrization of
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the recurrent neural network in Equation 2.11, the value of any row i

of the matrix
(

∂x+
k

∂Wrec

)
is just σ(xk−1)

∂xt
∂xk

=
t∏

i=k+1

∂xi
∂xi−1

=
t∏

i=k+1

WT
recdiag(σ′(xi−1)) (2.14)

Equation 2.14 provides the form of Jacobian matrix ∂xi

∂i−1 for the parametriza-

tion in Equation 2.11 where σ′(·) computes element-wise the derivative

of σ(·). From now on we will also distinguish between long term and

short term contributions, where long term refers to components for

which k >> t and short term to everything else.

We can interpret the vanishing gradient behavior as the error signal

from later time steps that cannot go enough back in time to influ-

ence the network at earlier time steps. This makes it difficult to learn

long-term dependencies making it impossible for the model to learn

correlation between temporally distant events.

In order to understand why this phenomenon occurs during the

training we need to look at the form of each temporal component, and

in particular at the matrix factors ∂xt

∂xk
that take the form of a product

of t− k Jacobian matrices in Equation 2.14.

Just like a product of t − k real numbers can shrink to zero or

explode to infinity, so does a product of matrices (along some direction

v). Long term components can both grow exponentially or go fast to

norm 0 and so do the gradients, making it impossible for the model to

learn correlation between temporally distant events. Now we are going

to formalize these intuitions.

Consider at first a linear version of model setting σ(·) to the identity

function in Equation 2.11. We can use the power iteration method to

formally analyze the product of Jacobians in Equation 2.14 and obtain

conditions for when the gradients explode or vanish.

We define the spectral radius ρ of a square matrix as the supremum

among the absolute values of the elements in its spectrum, formally, let

λ1, . . . , λn be the (real or complex) eigenvalues of a matrix A ∈ Cn×n,

then its spectral radius is defined as

ρ(A) = max{|λ1|, . . . , |λn|}

The spectral radius is closely related to the behavior of the convergence

of the power sequence of a matrix and the following theorem holds:
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Theorem. Let A ∈ Cn×n with spectral radius ρ(A) then ρ(A) < 1

if and only if

lim
k→∞

Ak = 0.

Moreover, if ρ(A) > 1, ||Ak|| is not bounded for increasing values of k.

Considering now the spectral radius ρ of the recurrent matrix Wrec, it

is sufficient for ρ < 1 for long term components to vanish (as t→∞)

and necessary for ρ > 1 for them to explode.

Pascanu et. Al [52] generalize this result for nonlinear functions

σ where |σ′(x)| is bounded, ||diag(σ′(xk))|| ≤ γ ∈ R by relying on

singular values. According to the parametrization of Equation 2.11, let

λ1 the largest singular value of Wrec, they prove that it is sufficient for

λ1 ≤ 1
γ

for the vanishing gradient problem to occur.

The Jacobian matrix ∂xk+1

∂xk
is given by WT

recdiag(σ′(xk)). The 2-norm

of a product of matrices is bounded by the product of the norm of the

matrices.

∀k,
∥∥∥∥
∂xk+1

∂xk

∥∥∥∥ ≤
∥∥WT

rec

∥∥ ‖diag(σ′(xk))‖ <
1

γ
< 1 (2.15)

Let η ∈ R be such that ∀k,
∥∥∥∂xk+1

∂xk

∥∥∥ ≤ η < 1. The existence of η is

given by Equation 2.15. By induction over i, we can show that
∥∥∥∥∥
∂E
xt

(
t−1∏

i=k

∂xi+1

∂xi

)∥∥∥∥∥ ≤ ηt−k
∥∥∥∥
∂Et
∂xt

∥∥∥∥ (2.16)

According to the previous equation it follows that if η < 1, long term

contributions (for which t− k is large) go to 0 exponentially fast with

t − k, while the necessary condition for exploding gradient problem is

given by the inverse, that is λ1 >
1
γ
.

Usually the non linear function used in a neural network are the sig-

moid or the hyperbolic tangent and their derivatives are respectively

in the range of (−1,−1) and (0, 1). So computing the gradients with

respect to the weights of the k-th layer consists of multiplying k deriva-

tives of values less than 1, meaning that the gradient (error signal) will

decrease exponentially with k.

In the following sections we will describe in details two elegant ar-

chitecture to address the vanishing gradient problem.
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2.4.2 Long Short-term memory (LSTM)

Long-Short Term Memory Network (LSTM) [53] has been introduced

by Hochreiter and Schmidhuber to overcome the problem of vanishing

gradients in recurrent neural networks. This model resembles a stan-

dard neural network with a recurrent hidden layer, in which each node

in the hidden layer is replaced with a memory cell.

The LSTM architecture consist of a memory cell ct that can main-

tain its state over time, and some non-linear gating units which regulate

the information flow into and out of the cell. The key feature of LSTM

nodes is their ability to add or remove information to the cell state by

means of these simple structures called gates. The memory cell con-

tains a node with a self-connected recurrent edge of weight 1, ensuring

that the gradient can pass across many time steps without vanishing

or exploding, while the gates control the amount of changes to and ex-

posure of the memory content. They are composed of a sigmoid neural

net layer and a pointwise multiplication operation. The sigmoid layer

output are real numbers in the range of zero and one, describing how

much of each component should be let through. We can think of the

gates as “taps” that can be nonlinearly closed or opened to control the

flow of information through the memory cell. A value of the gate of

zero means no information is let through, while a value of one means

that all the information is let through.

During the years many variants of the original LSTM structure have

been proposed. For the explanation we refer to the recent state of the

art LSTM architecture proposed by Zaremba et al. [54] in 2014.

Now we describe in details each component of the LSTM memory

cell depicted in Figure 2.8:

Input Node : this node, labeled ctj, behaves as a classical neuron,

taking activation from the rest of the hidden layer at the previous

time step as well as from the example x. Typically, the linear input

is run through an hyperbolic tangent activation function.

c̃t = tanh(Wcxt + Ucht−1), (2.17)

Input Gate : it is a sigmoidal unit σ(·) that, like the input node,

takes activation from the hidden layer at the previous time step and

also from the example x. The input gate it is so named because its

output value is multiplied by that of the input node. It regulates how
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Figure 2.8: Detailed schematic of the Simple Recurrent Network (SRN) unit (left) and

a Long Short-Term Memory cell (right).

much of the activation of the input node passes through the gate and

can go into the memory cell.

it = σ(Wixt + Uiht−1), (2.18)

Internal State : the core of each memory cell is a node ct with

linear activation, which is referred to as internal state of the cell.

It has a self-connected recurrent edge with weight 1 that is called

constant error carousel (CEC). This edge spans adjacent time steps

with constant weight, assuring that error can flow across time steps

without vanishing.

ct = c̃t � it + ct, (2.19)

where � stands for element-wise multiplication.

Forget Gate : with this gate we can feature the network with the

ability to learn when it is time to flush the contents of the internal

state and clean the memory cell. This is especially useful in contin-

uously running networks.

ft = σ(Wfxt + Ufht−1). (2.20)

With forget gates ft, the equation to calculate the internal state on

the forward pass becomes:

ct = c̃t � it + ct � ft (2.21)

Output gate : the output of the internal state is regulated by a last

output gate, which we denote oc. As usual the gate is multiplied
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by the value of the internal state sc to produce the value vc of the

final output of the memory cell. The internal state can optional pass

through a nonlinear unit such as tanh before to be multiplied by the

gate.

ot = σ(Woxt + Uoht−1), (2.22)

ht = tanh(ct)� ot. (2.23)

Forget gates, described above, weren’t in the original version of LSTM

architecture and were proposed by Gers et al. in 2000 [55]. However,

they have proven to be effective and are now standard in most modern

implementations.

In traditional LSTM each gate receives connections from the input

units and the output of all cells, but there is no direct connection from

the Constant Error Carousel it is supposed to control. All it can ob-

serve directly is the cell output, which is close to zero as long as the

output gate is closed. The same problem occurs for multiple cells in

a memory block: when the output gate is closed none of the gates

has access to the CECs they control. This results in lack of essential

information degrading the performance of the network, especially for

tasks that require the accurate measurement or generation of time in-

tervals such as Rhythm detection. To overcome this problem, Gers and

Schmidhuber introduced peephole connections [56], which are connec-

tions from the CEC to the gates of the same memory block. Peephole

connections allow all gates to inspect the current cell state even when

the output gate is closed. They report that these connections improve

performance on timing tasks where the network must learn to measure

precise intervals between events.

As mentioned before, there are many variants of LSTM architec-

tures and they use different activation functions for each layer. For

example latests state of the art use hyperbolic tangent for the input

node, but in the original LSTM paper [53], the activation function for

g was the sigmoid σ.

We can see the intuition behind the mechanism of the LSTM ana-

lyzing both the forward pass and the backward pass. In terms of the

forward pass, the LSTM can learn when to let activation flow into the

internal state. As long as the input gate takes value 0, no activation

can get in. Similarly, the output gate learns when to let the value out.

When both gates are closed, the activation is preserved in the LSTM,
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neither growing nor shrinking, nor affecting the output at the inter-

mediary time steps. In other words each memory cell learns when to

memorize and when to reset from the very same data used to learn the

model.

In terms of the backwards pass, the constant error carousel enables

the gradient to propagate back across many time steps, neither explod-

ing nor vanishing. In this sense, the gates are learning when to let error

in, and when to let it out.

Since LSTMs effectively capture long-term temporal dependencies

without suffering of the same problems which affect simple recurrent

networks they have been used to advance the state of the art for many

difficult problems. This includes handwriting recognition [57–59] and

generation [60], language modeling [54] and translation [61], speech

acoustic modeling [62], speech synthesis [63], protein secondary struc-

ture prediction [1], audio and video analysis [64,65] among others.

2.4.3 Gated Recurrent Unit (GRU)

In a LSTM architecture the input and forget gates control how much of

the new information should be memorized in the memory cell and how

much of the old information should be forgotten by it. These gates are

computed from the previous hidden states and the current input:

it = σ(Wixt + Uiht−1), (2.24)

ft = σ(Wfxt + Ufht−1). (2.25)

The output gate ot controls to which degree the memory content

is exposed. In the same way of the other gates, the output gate also

depends on the current input and the previous one:

ot = σ(Woxt + Uoht−1). (2.26)

This kind of structure has been the state-of-the-art for learning the

long-term dependencies in a recurrent neural network for long time.

Recently an interesting modification has been proposed called Gated

Recurrent Unit (GRU) that meant to be a simpler and computationally

less intensive version of the LSTM.

Introduced by Cho et al. in [48] GRU, like the LSTM, was designed

to adaptively reset or update its memory content. Each GRU thus

has a reset gate rjt but it couples the input and the forget gate of
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the LSTM into a single update gate zjt. In such a way GRU balances

between the previous memory content and the new one strictly using

leaky integration, meaning that the updated value is computed as a

weighted average of the candidate and old content of the cell. At

timestep t, the state hjt of the j-th GRU is computed by:

hjt = (1− zjt )hjt−1 + zjt h̃
j
t (2.27)

where hjt−1 and h̃jt respectively correspond to the previous memory

content and the new candidate memory content. The update gate zjt
controls how much of the previous memory content has to be forgotten

and how much of the new memory content has to be added. The

update gate is computed based on the previous hidden states ht−1 and

the current input xt:

zt = σ(Wzxt + Uzht−1) (2.28)

Unlike the LSTM, the GRU does not use an output gate, so it fully

exposes its memory content each timestep. One major difference from

the traditional RNN transition function is that the states of the previ-

ous step ht−1 are modulated by the reset gates rt. This behavior allows

a GRU to ignore the previous hidden states whenever it is deemed nec-

essary considering the previous hidden states and the current input:

rt = σ(Wrxt + Urht−1), (2.29)

the new memory content is computed by:

h̃t = tanh(Wxt + rt � Uht−1). (2.30)
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The update mechanism helps the GRU to capture long-term de-

pendencies. Whenever a previously detected feature, or the memory

content is considered to be important for later use, the update gate

will be closed to carry the current memory content across multiple

timesteps. The reset mechanism helps the GRU to use the model ca-

pacity efficiently by allowing it to reset whenever the detected feature

is not necessary anymore. No peephole connections neither output ac-

tivation functions are used in the GRU architecture.

An initial comparison between GRU and LSTM has been performed

by Chung et al. [66] reporting mixed results.

2.4.4 Bidirectional Recurrent Neural Networks

So far we have just considered recurrent networks that have a “causal”

structure, meaning that the state at time t only captures information

from the past. However, in many applications the output prediction

may depend on the whole input sequence. For example, in speech

recognition, the correct interpretation of the input sequence may de-

pend also on the next future phonemes because of the co-articulation

or even on the next few words because of the linguistic context cre-

ated by word dependencies. Usually in natural language processing

tasks like part-of-speech tagging, it happens to have more than one

interpretation for the same word, for example it can be a noun or a

verb depending on the context. By looking at the overall context, it is

possible to solve this ambiguity.

Bidirectional recurrent neural networks (BDRNNs or BRNNs) were

invented to address that need by Schuster and Paliwal [67] in 1997.

In the BRNN architecture, the information from both the future and

the past are used to determine the output at any time t. This is in

contrast to the previous systems, in which only the past input can

affect the output, and has been used successfully for sequence labeling

tasks in natural language processing, among others.

As the name suggests, the idea behind BRNNs is to combine a

forward-going RNN and a backward-going RNN. There are two layers of

hidden nodes, both are connected to input and output. The two hidden

layers are differentiated in that the first has recurrent connections from

the past time steps, while in the second the direction of recurrence

of the connections is flipped, passing activation backwards in time.

Given a fixed length sequence, the BRNN can be trained with ordinary
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Figure 2.10: A pictorial representation of a bidirectional recurrent network.

backpropagation. The following three equations describe a BRNN:

−→
h t = σ(W−→

h
xt + U−→

h

−→
h t−1) (2.31)

←−
h t = σ(W←−

h
xt + U←−

h

←−
h t−1) (2.32)

h = [
−→
h t :
←−
h t] (2.33)

where
−→
h t and

←−
h t correspond respectively to the hidden layers in the

forwards and backwards directions, and [x : y] denotes the concatena-

tion of two vectors.

One limitation of the BRNN is that it cannot run continuously, as

it requires a fixed endpoint in both the future and in the past. Actually

BRNNs, are not an appropriate machine learning models for the online

setting, as it is implausible to receive information from the future, i.e.,

sequence elements that have not been observed, that would mean that

the system is not causal. But for sequence prediction over a sequence

of fixed length, it is often sensible to account for both past and future

data. Consider the natural language task of part-of-speech tagging.

Given a word in a sentence, information about both the words which

precede and those which succeed it is useful for predicting that word’s

POS tag.

Bidirectional RNNs and LSTM have been successfully combined by

Graves et al. for phoneme classification [68] and handwriting recog-
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nition [57]. Moreover Karpathy et al. use such a network for image

caption generation [41].



Chapter 3

Models for Semantic

Segmentation

3.1 Introduction

Semantic segmentation is a low-level computer vision problem which

involve assigning a label to each pixel in an image. In particular we

define this kind of task as a structured prediction problem where “struc-

tured” means that there is a relation between the output predictions i.e

the prediction of a pixel is related with the prediction of its neighbours.

The feature representation used to classify individual pixels plays an

important role in this task, mainly because we need to consider also

factors such as image edges, appearance consistency and spatial consis-

tency in order to obtain accurate and precise results. For these reasons

designing a strong feature representation is a key challenge in pixel-level

labelling problems. Before the arrival of deep networks, the best per-

forming methods mostly relied on hand engineered features classifying

pixels independently. Work on this topic includes: TextonBoost [69],

TextonForest [70], and Random Forest-based classifiers [71].

Prior works on semantic segmentation include many different ap-

proaches, both using RGB data as well as RGB-D. Most of these use

local features to classify over-segmented regions, followed by a global

consistency optimization such as a CRF.

Typically, a patch is fed into a classifier e.g. Random Forest [3,70],

or Boosting [72,73] to predict the class probabilities of the center pixel.

Features based on appearance [70] or Structure from Motion (SfM)
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and appearance [3, 72, 73] have been explored for the CamVid road

scene understanding test [3]. These per-pixel noisy predictions (often

called unary terms) from the classifiers are then smoothed by using a

pair-wise or higher order CRF [72, 73] to improve the accuracy. More

recent approaches have aimed to produce high quality unaries by trying

to predict the labels for all the pixels in a patch as opposed to only

the center pixel. This improves the results of Random Forest based

unaries [74] but thin structured classes are classified poorly. Dense

depth maps computed from the CamVid video have also been used as

input for classification using Random Forests [75] . Another approach

argues for the use of a combination of popular hand designed features

and spatio temporal super-pixelization to obtain higher accuracy [76].

The recent success of supervised deep learning approaches such

as large-scale deep Convolutional Neural Networks in many high-level

computer vision tasks such as image recognition [38] and object detec-

tion [77] motivates exploring the use of CNNs for pixel-level labelling

problems.

In parallel to the progress of deep learning techniques, probabilistic

graphical models have been developed as effective methods to enhance

the accuracy of pixel-level labelling tasks. In particular, Markov Ran-

dom Fields (MRFs) and its variant Conditional Random Fields (CRFs)

have observed widespread success in this area [78,79] and have become

one of the most used graphical models in computer vision. The key

idea of CRF inference for semantic labelling is to formulate the label

assignment problem as a probabilistic inference problem that incorpo-

rates assumptions such as the label agreement between similar pixels.

CRF inference is able to refine weak and coarse pixel-level label pre-

dictions to produce sharp boundaries and fine-grained segmentations.

In this chapter we give a briefly review the state-of-the-art tech-

niques for semantic segmentation.

3.2 Shallow Models

3.2.1 Conditional Random Field

Most of the state-of-the-art semantic segmentation systems are for-

mulated as the problem of finding the most probable labelling on a

Markov Random Field (MRF) or Conditional Random Field (CRF).

CRF provides a probabilistic framework to model complex interactions
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between output variables and observed features. Thanks to the ability

to factorize the probability distribution over different labelling of the

random variables, CRF allows for compact representations and efficient

inference.

A CRF, in the context of pixel-wise label prediction, models pixel

labels as random variables that form a Markov Random Field (MRF)

when conditioned upon a global observation. The global observation is

usually taken to be the image.

Let Xi be the random variable associated to pixel i, which repre-

sents the label assigned to the pixel i and can take any value from a

predefined set of labels L = {l1, l2, · · · , lL}.
Let X be the vector formed by the random variables X1, X2, ..., XN ,

where N is the number of pixels (or super-pixels) in the image. Given

a graph G = (V,E), where V = {X1, X2, · · · , XN}, and the global

observation I (the image) , the pair (I,X) can be modelled as a CRF

characterized by a Gibbs distribution in the form of:

P (X = x|I) =
1

Z(I)
exp(−E(x|I)) (3.1)

Here E(x) is called the energy of the configuration x ∈ LN and

Z(I) is the partition function which ensures the distribution is prop-

erly normalized and summed to one. Computing the partition function

is intractable due to the sum of exponential functions, but such com-

putation is not necessary when the task is to infer the most likely

labeling. From now on, we drop the conditioning on I in the notation

for convenience.

Maximizing the posterior probability in 3.1 is equivalent to mini-

mize the energy function. A common model for pixel labeling involves

a unary potential ψu(yi;x) which is associated with each pixel, and a

pairwise potential ψp(xi, xj) which is associated with a pair of neigh-

borhood pixels:

E(x) =
∑

i

ψu(xi) +
∑

i<j

ψp(xi, xj) (3.2)

The unary energy components ψu(xi) measure the inverse likelihood

(and therefore, the cost) of the pixel i taking the label xi, and pairwise

energy components ψp(xi, xj) measure the cost of assigning labels xi, xj
to pixels i, j simultaneously.
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The unary energies predict labels for pixels without considering the

smoothness and the consistency of the label assignments. The pair-

wise energies provide an image data-dependent smoothing term that

encourages assigning similar labels to pixels with similar properties.

Given the energy function, semantic segmentation usually follows

the following pipelines:

1. Extract features from a patch centered on each pixel

2. With the extracted features and the ground truth labels, an ap-

pearance model is trained to produce a compatible score for each

training sample

3. The trained classifier is applied on the test image’s pixel-wise

features, and the output is used as the unary term

4. The pairwise term of the CRF is defined over a 4 or 8-connected

neighborhood for each pixel

5. Perform maximum a posterior (MAP) inference on the graph.

To optimize the energy function, various techniques can be applied,

such as GraphCut, Belief-Propagation or Primal-Dual methods, etc.

A complete review of recent inference methods can be found in [80].

Original CRF or MRF models are usually limited to 4-neighbor or 8-

neighbor. Recently, a fully connected graphical model which connects

all pixels gained popularity thanks to an efficient inference algorithm

based on fast image filtering which only requires that the pairwise term

should be a mixture of Gaussian kernels [78]. Modeling the pairwise

potentials as weighted Gaussians [78] we obtain:

ψp(xi, xj) = µ(xi, xj)
M∑

m=1

w(m)k
(m)
G (fi, fj) (3.3)

where each k
(m)
G for m = 1, · · · ,M is a Gaussian kernel applied on

feature vectors.

The feature vector of pixel i, denoted by fi, can be derived from

image features such as spatial location and RGB values. The function

µ(·, ·), called the label compatibility function, captures the compatibil-

ity between different pairs of labels as the name implies. Minimizing

the above CRF energy E(x) yields the most probable label assignment

x for the given image.
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Before of the deep learning success, the commonly used features

were bottom-up pixel-level features such as color or texton, but re-

cently features extracted by deep convolutional neural network have

been applied to replace the hand-crafted features, becoming the state-

of-the art for these kind of tasks.

The context (such as boat in the water, car on the road) has emerged

as another important factor beyond the basic smoothness assumption

of the CRF model. Basic context model is implicitly captured by the

unary potential, e.g. the pixels with green colors are more likely to be

grass class. Recently, more sophisticated class co-occurrence informa-

tion has been incorporated in the model. Rabinovich et al. [81] learned

label co-occurence statistic in the training set and then incorporated

it into CRF as additional potential. Later the systems using multiple

forms of context based on co-occurence, spatial adjacency and appear-

ance have been proposed in [82–84]. Ladicky et al. [85] proposed an

efficient method to incorporate global context, which penalizes unlikely

pairs of labels to be assigned anywhere in the image by introducing

Superpixel algorithms

Superpixel algorithms aim to find perceptually meaningful atomic re-

gions grouping pixels together in order to achieve a more suitable rep-

resentation with respect to the rigid structure of the pixel grid. By

exploiting superpixels, the complexity of the model is greatly reduces

from millions of variables to only hundreds or thousands. They greatly

reduce the complexity capturing image redundancy and providing a

convenient primitive from which to compute image features. They have

become key building blocks of many computer vision algorithms before

the outbreak of deep learning methods. There are many approaches

to generate superpixels, each with its own advantages and drawbacks

that may be better suited to a particular application. According to [86]

there are three main properties which are desirable for the superpixels

produced by a given algorithm:

1. Superpixels should adhere well to image boundaries.

2. Superpixels should be fast to compute, memory efficient, and sim-

ple to use.

3. Superpixels should both increase the speed and improve the qual-

ity of of the results.
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Algorithms for generating superpixels can be broadly categorized as

graph-based or gradient ascent methods. Graph-based approaches treat

each pixel as a node in a graph where the edge weights between two

nodes are proportional to the similarity between neighboring pixels.

Then superpixels are created by minimizing a cost function defined

over the graph. Gradient-ascent-based algorithms start from a rough

initial clustering of pixels and iteratively refine the clusters until some

convergence criterion is met to form superpixels. A comprehensive

review and comparison of superpixel algorithms can be found in [86].

3.3 Deep models for semantic segmentation

In the last few years Deep Learning transformed Computer Vision,

drastically advancing the state of the art of Image Understanding algo-

rithms. There are several reason behind the success of Deep Learning

and in particular of ConvNets for computer vision tasks. One of the

most important is the massive use of General Purpose GPUs which

allowed to learn bigger and deeper models efficiently parallelizing the

training phase and outperforming the algorithms used so far. A bet-

ter understanding of the optimization problems in training neural net-

works [27,87] led to the discovery of faster optimization methods [25,26]

and new parameters initializations [28,29].

Moreover, the introduction of new kinds of hidden units such as

ReLU and its variant pReLU [29] or the recently proposed ELU [37]

helped to reduce the vanishing gradient problem and allow to stack

more layers.

Bigger datasets such as ImageNet [88] and MS COCO [89] have

been introduced for tasks like image recognition, segmentation, and

captioning. In particular, an important role in the advance of deep vi-

sual recognition architectures has been played by the ImageNet Large-

Scale Visual Recognition Challenge (ILSVRC) [90], which has served

as benchmark tool for different generations of large-scale image clas-

sification systems, from high-dimensional shallow feature encodings to

deep ConvNets.

Convolutional models

Convolutional networks rapidly became the de facto standard in recog-

nition surpassing the performance of shallow models used so far. Con-
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vnets showed to be incredibly successful not only on whole-image classi-

fication [38,39,91], but also on local tasks with structured output such

as bounding box object detection [77, 92, 93] and part and key-point

prediction [94].

The natural next step in the progression from coarse to fine inference

is to make a prediction at every pixel. Recent semantic segmentation

algorithms are often formulated to solve structured pixel-wise labeling

problems based on CNN. They convert an existing CNN architecture

constructed for classification to a fully convolutional network (FCN).

They obtain a coarse label map from the network by classifying every

local region in image, and perform a simple upsampling, which is im-

plemented as bilinear interpolation, for pixel-level labeling. ConvNets

extension for semantic segmentation have been extensively studied in

the last years by [5, 9, 95–101].

This approaches aim to learn a strong feature representation end-to-

end instead of hand-crafting features with heuristic parameter tuning

such as SIFT or HOG. Recent particularly interesting works based

on Fully Convolutional Networks (FCN) [9] and “DeepLab” [99] have

shown a significant accuracy improvement by adapting state-of-the-art

CNN based image classifiers to the semantic segmentation problem.

Gupta et al. [96, 102] create semantic segmentations first by gen-

erating contours, then classifying regions using either hand-generated

features and SVM , or a convolutional network for object detection.

Pinheiro et al. [100] use a recurrent convolutional network in which

each application predicts labels at the center location of an input re-

gion, given predicted labels from the previous scale and a rescaled input

patch. Farabet et al. [103] and Couprie et al. [104] both use a convolu-

tional network applied at multiple scales to find local predictions, then

aggregate the predictions using superpixels.

Eiden and Fergus [10] proposed a complete architecture that can

be applied both to pixel-wise classification as well to spatially-varying

outputs such as depth/normals estimation. They uses an inverted ap-

proach with respect to the other methods making a consistent global

prediction first and applying iterative local refinements. In so doing,

the local networks are made aware of their place within the global

scene, and can can use this information in their refined predictions. No

superpixels or any post-process smoothing are used in this work.

In their concurrent work, Long et al. [9] adapt the recent VGG Ima-
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geNet model to semantic segmentation by applying 1×1 convolutional

label classifiers at feature maps from different layers, corresponding to

different scales, and averaging the outputs. By contrast, Eiden and Fer-

gus [10] apply networks for different scales in series, which allows them

to make more complex edits and refinements, starting from a full image

field of view. This architecture easily adapts to many tasks, whereas

by using fields of view always centered on the output and summing

predictions [9] is specific for semantic labeling.

Hariharan et al. [97] and Gupta et al. [96] likewise adapt deep clas-

sification nets to semantic segmentation, but do so in hybrid proposal-

classifier models. These approaches fine-tune a Region Convolutional

Network system (R-CNN) [77] by sampling bounding boxes and/or

region proposals for detection, semantic segmentation, and instance

segmentation. Neither method is learned end-to-end since they need a

further step to individuate the region proposals.

Besides the success and the wide adoption, there are two signif-

icant technical challenges in adapting CNNs designed for high level

computer vision tasks such as object recognition to pixel-level labelling

tasks: signal downsampling and spatial invariance. Firstly, traditional

CNNs have convolutional filters with large receptive fields and hence

produce coarse outputs when restructured to produce pixel-level la-

bels. Moreover the presence of strided convolutions (downsampling)

and max-pooling layers in CNNs further reduces the chance of getting

a fine segmentation output. This, for instance, can result in non-sharp

boundaries and blob-like shapes in semantic segmentation tasks.

The second problem relates to the fact that obtaining object-centric

decisions from a classifier requires invariance to spatial transformations,

inherently limiting the spatial accuracy of the Deep CNN model. More-

over CNNs do not impose any smoothness constraints that encourage

label agreement between similar pixels, and spatial and appearance

consistency of the labelling output resulting in poor object delineation

and small spurious regions in the segmentation output.

To overcome the drawbacks of CNNs in pixel-level labelling tasks,

they are usually combined with Conditional Random Field (CRF) in

order to improve the ability of the system to capture fine details. CRFs

can be applied as post-processing step after the CNNs training [99] but

requires two different training steps. This kind of approach is widely

used in the literature but it does not fully exploit the strength of CRFs
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Figure 3.1: An example of deep convolutional architecture: SegNet [5]

since it is not integrated with the deep network. In this setup, the deep

network, being unaware of the CRF, only learns to predict unstructured

labels for pixels during its training.

Zheng et Al. [105] proposed an end-to-end deep learning solution for

the pixel-level semantic image segmentation problem which combines

the strengths of both CNNs and CRF based graphical models in one

unified framework. More specifically, they showed that a dense CRF

inference can be formulated as a Recurrent Neural Network which can

refine coarse outputs from a traditional CNN in the forward pass, while

passing error differentials back to the CNN during training. Using this

formulation the whole deep network can be trained end-to-end utilizing

the usual back-propagation algorithm.

Badrinarayanan et Al. [106] proposed a deep fully convolutional

neural network architecture for semantic pixel-wise segmentation called

SegNet. The model consists of an encoder network and a correspond-

ing decoder network followed by a pixel-wise classification layer. The

encoder network share the same topology with the convolutional layers

in the VGG-16 architecture [91]. In order to adapt the architecture

to pixel-wise classification they remove the fully connected layers of

VGG-16 making the encoder network significantly smaller in terms

of parameters and easier to train. The key component of SegNet is

the decoder network which consists of a hierarchy of upsample layers

one corresponding to each encoder. The appropriate decoders use the

max-pooling indices received from the corresponding encoder to per-

form non-linear upsampling of their input feature maps. The decoder

network map the low resolution encoder feature maps to full input

resolution feature maps for pixel-wise classification. Specifically, the

SegNet decoder uses pooling indices computed in the max-pooling step

of the corresponding encoder to perform non-linear upsampling. This

reduce the complexity of the upsample layer needing only to learn how
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to densify the sparse feature maps.

Similar proposed architectures are Deconvolutional Network [107]

and its semi-supervised variant the Decoupled network [108] which both

use the max locations of the encoder feature maps (pooling indices) to

perform non-linear upsampling in the decoder network. The authors

proposed these architectures, independently of SegNet.

However DeconvNet [107] encoder network includes also the fully

connected layers from the VGG-16 architecture which consists of about

90% of the parameters of their entire network. This makes training of

their network very difficult and thus require additional aids such as the

use of region proposals to enable training. Moreover, during inference

these proposals are used and this increases inference time significantly.

3.4 Datasets for urban street scene parsing

3.4.1 The Cambridge-driving Labeled Video Database

The Cambridge-driving Labeled Video Database (CamVid) [3, 109] is

the first collection of videos with object class semantic labels which has

been proposed for urban street scene semantic segmentation. The video

footage was recorded from driving around various urban settings and

is particulary challenging given various lighting and weather settings

such as dusk, dawn or sunny, rainy weather. The database provides

ground truth labels that associate each pixel with one of 32 semantic

classes, but the standard experimental setting is given by a subset of

11 classes which group together in broader categories.

The dataset contains ten minutes video footage recorded at 30 Hz

and 960 × 720 resolution. The corresponding semantically labeled

ground-truth images at 1Hz and in part, 15Hz. The total annotated

images are 701, split in 367 images for training , 101 for validation and

233 for testing.

3.4.2 Daimler Urban Segmentation Dataset

The Daimler Urban Segmentation dataset [14] contains 500 stereo grayscale

image pairs with pixel-wise semantic class annotations for the left im-

ages. While the image size in the dataset is 1024 × 440, only the

middle is fully labeled. Hence, the effective image size is 976 × 360.

The dataset is composed for evaluating only the semantic labeling using
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Figure 3.2: An example from the CamVid dataset [3].
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stereo image pairs. Disparity maps computed with SfM are provided.

The semantic labels in the annotations include ground, sky, building,

pedestrian, vehicle, curbs, bicyclist, motorcyclist, and background clut-

ters. However, only the ground, sky, building, pedestrian, and vehicle

are considered in the evaluation protocol.

3.4.3 KITTI Road Detection

The KITTI Vision Benchmark Suite [8] supports and assesses vision

algorithms in the context of autonomous driving. This benchmark

includes datasets for stereo vision, optical flow, visual odometry, 3D

object recognition, and tracking. The KITTI dataset does not offi-

cially support a Semantic Segmentation benchmark, however several

researchers have annotated some KITTI images. The policies behind

the annotations are different for every subset of images, so it’s hard

to use them jointly for a proper training procedure. KITTI have also

provides specific benchmark for Road Detection that is simpler binary

classification task. The images are all manually annotated and con-

tains binary labels of whether each pixel is drivable road or not. The

dataset consist of 289 images for training and 290 images for testing.

3.4.4 The Cityscapes Dataset

Cityscapes dataset [4] is a new large-scale dataset that contains a di-

verse set of stereo video sequences recorded in street scenes from 50

different cities, with high quality pixel-level annotations of 5000 frames

in addition to a larger set of 20000 weakly annotated frames. The

dataset is thus an order of magnitude larger than similar previous at-

tempts and the images are provided in high resolution 2048× 1024.

The high variability of outdoor urban streets makes accurate scene

understanding very challenging. Unfortunately, most of scene parsing

datasets fall behind in capturing this high variance, mostly due to

scarcity of available samples.

For instance, the KITTI dataset contains 6 hours of video mate-

rial, all recorded in the Karlsruhe, Germany, metropolitan area. Out

of these recordings, only 25% are publicly available and semantic seg-

mentation task is not officially supported, so roughly 430 images have

pixel-level semantic annotations, provided by different independent re-

search groups.
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Cityscape dataset takes into account this issue by focusing on a high

diversity between annotated images in order to capture a wider range

of street scenes than any previous dataset. Video have been recorded in

approximately 50 different cities to reduce city-specific overfitting, col-

lected during several months, covering spring, summer, and autumn.

Moreover recordings are restricted only to good weather conditions,

which already pose a significant challenge for computer vision. Ap-

proximately half of the annotated images are extracted from long video

sequences, while the remaining are the 20th images from 30 frame video

snippets (1.8s). The surrounding frames are provided as context for

methods exploiting Optical Flow, Tracking, or Structure-from-Motion.

In addition to video, they provide corresponding right stereo views, pre-

computed depth maps, GPS coordinates, and ego-motion data from the

vehicle odometry.
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Figure 3.3: An example from the Cityscapes dataset [4].
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ReSeg architecture

In this chapter we describe the original ReSeg model presented by

Visin et. Al [2] detailing the recurrent and the upsampling layers that

compose the architecture.

4.1 ReNet and ReSeg models

As extensively discussed in the previous chapter, Convolutional Neural

Networks have become the de facto standard in many computer vision

tasks. Object Recognition, Image Classification and recently Seman-

tic Segmentation problems are increasingly often solved with a deep

convolutional network leveraging its architecture properties and its ca-

pacity of extracting task specific, yet at the same time generic image

representations.

On the other hand, recurrent neural networks have become the first

choice for modeling sequential data, especially in the field of natural

language processing. RNNs have become one of the most widely used

methods for natural language related tasks such as language modeling

and machine translation [48]. The addition of recurrent connections

allows RNNs to exploit the previous context, as well as makes them

more robust to warping along the time axis than non-recurrent models.

Access to contextual information and robustness to warping are also

important when dealing with multi-dimensional data. For example, a

face recognition algorithm should use the entire face as a context, and

should be robust to changes in perspective, distance etc. It therefore

seems desirable to apply RNNs to such tasks.

In the recent years in fact recurrent neural networks have begun
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to be employed in a few computation vision tasks (Kalchbrenner et

al. [110]; Graves & Schmidhuber [57]).

The architecture proposed in Visin et al. [2, 11] is related and in-

spired by this earlier work, but relies on multiple uni-dimensional RNNs

coupled in a novel way to address the problem of Object Classification

and Semantic Segmentation. In this work the authors show how Re-

current Neural Networks can be used as an alternative to the classical

convolutional architecture to process images for computer vision tasks,

specifically for object classification and semantic segmentation.

As we have seen before Bidirectional Recurrent Networks can pro-

cess a time sequence forward and backward through time so that the

output units compute a new representation which depends on both the

past and the future samples of the time instant t. This idea can be eas-

ily extended to 2-dimensional input, such as images, by having four

RNNs, each one scanning the four directions: up, down, left, right.

At each position (i, j) of the 2-D grid, an output Oi,j can encode a

representation that would capture mostly local information but also

long-range dependencies.

Compared to a convolutional network applying RNNs to images is

typically more expensive but allows for long-range lateral interactions

between neurons of the same layer.

Convolutional Neural Networks rely on fixed-sized kernels to intro-

duce context then it can be quite hard to extract a good feature rep-

resentation to labeling pixels just by looking at a small region around.

Indeed the category of a pixel may depend on relatively short-range in-

formation (e.g. the presence of eyes in a human face generally indicates

the presence of a nose nearby), but may also depend on long-range in-

formation. For example, identifying a grey pixel as belonging to a road,

a sidewalk, a gray car, a concrete building, or a cloudy sky requires a

wide contextual window that shows enough of the surroundings to make

an informed decision.

In this work we focused on the ReNet architecture proposed by Visin

et Al. [11] for object recognition. We extensively tested its extension

ReSeg [2] for semantic segmentation showing that it can reach state-of-

the art performance on challenging urban street scene parsing datasets.

In the proposed model, the image passes through several layers. It is

first swept by two horizontal RNNs in both directions (left to right and

right to left) and the concatenation of their activations is then swept
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by a second couple of RNNs vertically (top to bottom and bottom to

top). The output activation of the ReSeg layer is the concatenation

of the hidden states of these RNNs, which encodes the local features

of the image in each position with respect to the whole input image,

in contrast to the usual convolution+pooling layer which only has a

local context window. The result of the application of these 4 RNNs

is a feature map which summarizes the informations of the image from

all the directions encoding them in a context feature map that is both

global and local. In the next sections we are going to analyze each

component of the architecture in detail.

4.1.1 Recurrent Layer

In the ReSeg architecture [2] each recurrent layer is composed by 4

RNNs coupled together in such a way to capture the local and global

spatial structure of the input data. Specifically, we take as input an

image (or the feature map of the previous layer) X of elements x ∈
RH×W×C , where H,W and C are respectively the height, width and

number of channels (or features) and we split it into I × J patches

pi,j ∈ RHp×Wp×CW .

The input is then swept vertically a first time with two RNNs f ↑ and

f ↓, with U recurrent units each, that move top-down and bottom-up

respectively.

At every time step each RNN reads the next patch pi,j and, based

on its previous state, emits a projection o?i,j and updates its state z?i,j:

o↓i,j = f ↓(z↓i−1,j, pi,j), for i = 1, · · · , I (4.1)

o↑i,j = f ↑(z↑i+1,j, pi,j), for i = I, · · · , 1 (4.2)

Once the first two vertical RNNs have processed the whole input

X, their projections o↓i,j and o↑i,j are aggregated together to obtain a

composite feature map Ol whose elements o
l
i,j ∈ R2U can be seen as

the activation of a feature detector at the location (i, j) with respect

to all the patches in the j-th column of the input. We denote what we

described so far as the vertical recurrent sublayer.

After obtaining the concatenated feature map Ol, this is swept over

each of its rows with another pair of RNNs, f← and f→. In this case

Ol is not splitted into patches so that the second recurrent sublayer

has the same granularity as the first one, but this is not a constraint
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(a) (b)

Figure 4.1: In (a) we can see a pictorial representation of a ReNet layer that consists

of a vertical and horizontal scanning of the image; in (b) we give an interpretation of

the feature map extracted by the layer.

of the model and different architectures can be explored.

With a similar but specular procedure as the one described before, we

proceed reading one element o
l
i,j at each step

o→i,j = f→(z→i,j−1, o
l
i,j), for j = 1, · · · , J (4.3)

o←i,j = f←(z←i,j+1, o
l
i,j), for j = J, · · · , 1 (4.4)

We obtain a concatenated feature map O↔ = {o↔i,j}j=1,···J
i=1,···I once again

with o↔i,j ∈ R2U . Each element o↔i,j of this horizontal recurrent sublayer

represents the features of one of the input image patches pi,j with con-

textual information from the whole image.

It is also possible to apply all the 4 RNNs on the original input layer

X rather than on the feature map Ol extracted by the first recurrent

sublayer, in order to concatenate Ol and O↔ into a bigger feature map

where o(i,j) ∈ R4U . We have studied these two different architectural

choices in our experiments, please refer to the chapter 5 for a detailed

comparison.

As in any convolutional network, it is possible to concatenate many

recurrent layers O(1,··· ,L) one after the other to make ReNet deeper

and to capture increasingly complex features of the input image. The

deep ReSeg is a smooth, continuous function since it is a composition

of several nonlinear function, and the parameters can be estimated

by any optimization algorithm which perform gradient descent on the

cost function, and the gradient is computed by the backpropagation

algorithm [16].

Since each ReSeg layer projects its input in a new complex repre-

sentation, the architecture presented so far can be seen as a complex
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Figure 4.2: The ReNet architecture for image recognition
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Figure 4.3: The ReSeg architecture for pixel-wise semantic segmentation

feature learning model which can be embedded in any computer vision

system. Depending on the task, the last layers of the network that

follow the ReSeg layers will vary. In an image classification scenario,

after any number of recurrent layers are applied to an input image, the

activation of the last recurrent layer may be flattened and fed into a

differentiable classifier, for instance it can pass through several fully-

connected layers followed by a softmax non-linearity.

Since by design each recurrent layer processes patches, the size of

the last composite feature map will be smaller than the size of the

initial input X. To perform Semantic Segmentation we will therefore

need to add one or more layers to expand the feature map back to

the size of the image before passing it into a softmax non-linearity

to compute the corresponding segmentation mask. There are several

different architectures to accomplish this, we will discuss them in detail

in the next section.

4.1.2 Upsampling layer

Linear fully-connected upsampling

The easiest way to enlarge a composite ReSeg feature map O(l) before

feeding it into a softmax non-linearity is a two-step operation: first the

2U features of the last feature map are extended by an upsampling

factor Uup = UW
up · UH

up with a linear fully-connected layer to obtain a
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feature map E of 2U · Uup features:

E = O(l) ·W + b (4.5)

where W ∈ R2U×2U ·Uup and the upsampling factor components are

computed as:

UW
up =

∏

l∈layers

W (l)
p , UH

up =
∏

l∈layers

H(l)
p (4.6)

The resulting extended feature map E can then be re-arranged so

that each of its entries ei,j ∈ R1×2U ·Uup is mapped to a patch fi,j ∈
RUH

up×UH
up×2U in the output feature map F. A softmax classifier can

then be applied on this upscaled feature map to get the per-pixel class

prediction probabilities.

Deconvolutional networks: gradient-based upsampling

Deconvolutional Networks (DeconvNets) were presented for the first

time as a way of extracting features by performing unsupervised learn-

ing [111]. Successively, DeconvNet have been used to address the prob-

lem of ConvNet visualisation by Zeiler et Al. [32]. They proposed an

architecture which aims to approximately reconstruct the input of each

layer from its output.

Simonyan et Al. [112] gave a more rigorous explanation of the math-

ematics behind DeconvNets showing that a gradient-based ConvNet vi-

sualisation method generalizes deconvolutional networks. DeconvNet-

based reconstruction of of the n-th layer input Xn is either equivalent

or similar to computing the gradient of the visualised neuron activity

f with respect to Xn, so DeconvNet effectively corresponds to the gra-

dient back-propagation through a ConvNet.

For the convolutional layer Xn+1 = Xn ∗Kn, the gradient is computed

as:
∂f

∂Xn

=
∂f

∂Xn+1

∗KT
n (4.7)

where Kn and KT
n are the convolution kernel and its flipped version, re-

spectively. The convolution with the flipped kernel exactly corresponds

to the filtering operation in a DeconvNet which compute the n-th layer

reconstruction Rn :

Rn = Rn+1 ∗KT
n (4.8)



Chapter 4. ReSeg architecture 57

Computing the approximate feature map reconstruction Rn using

a DeconvNet is equivalent to computing the derivative ∂f/∂Xn us-

ing back-propagation, indeed, this can be seen as the generalization

of DeconvNet [32]. In particular the gradient-based techniques can be

applied to the visualization of activities in any layer, not just a con-

volutional one. In fact, the procedure described so far was initially

proposed to visualize the feature maps learned by a ConvNet but it

can be used in a more general framework for semantic segmentation to

restore the original dimension of the input after that is passed through

several layers which reduced its dimension.

Upsamplings of factor s can be considered convolutions with a stride

of integer fraction 1/s , therefore using the backward pass of a convo-

lution of stride s will result in the correct output shape. This kind of

upsampling is known as fractional convolution [9], backward convolu-

tion or more commonly deconvolution [32]. Upsampling is performed

for end-to-end learning by backpropagation from the pixelwise loss. A

stack of deconvolution layers and activation functions can be used to

learn a nonlinear upsampling.

In our case, it is possible to think of the last ReSeg feature map H

as the result of a convolution of a kernel K with the desired pre-sigmoid

feature map O:

H = K ∗O (4.9)

It is then possible to use the gradient of this convolution to upsample

the feature map Ok,l and compute the contribution of each element

of the composite feature map Hi,j to each element of the pre-sigmoid

feature map.

In the literature the upsampling operation is termed in many dif-

ferent ways: “In-network Upsampling”, “Fractionally-strided convolu-

tion”, “Backwards Convolution” [9], “Deconvolution” [32], while the

operation is implemented in Theano with the name of “Transposed

convolution” [113].

It is important to stress that the term Deconvolution has been

abused by the Deep Learning community to refer to the upsampling

operation. The original Deconvolution term comes from the Signal

Processing field and it has nothing to do with trying to invert a con-

volution + pooling layer or upsampling but it is the name given to

the inverse operator of a linear convolution. The operation described

in this section does not try to invert the convolution as that would
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require actually solving a linear inverse. Also, unless the convolution

weights are constraint to be orthonormal, taking the transpose of a

convolution is not the same as inverting it. Nothing about this layer is

an inverse in the strict sense or an actual deconvolution but this term

became of common use in the Neural Network community to address

this techniques.

Bilinear Interpolation

In addition to the above variants, it is possible to adopt an upsampling

method widely used in image processing called Bilinear Interpolation.

This form of upsampling provides a way to enlarge the dimension of

the feature maps in output at the last layer of the ReSeg network to

restore the original dimension of the input image and compute the final

prediction mask. The key idea is to perform linear interpolation first in

one direction (rows), and then again in the other direction (columns).

The operation can be also expressed in form of a convolution where the

kernel depends on the upssampling factor. For example the kernel of a

2x upscaling operation with bilinear interpolation is given by:


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1
4

1
2

1
4

1
2

1 1
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1
4

1
2

1
4


 (4.10)

In this case the kernel coefficients are fixed and don’t require to be

learned by the training procedure. This method reduces the number

of parameters and the complexity of the model making the training

simpler, and limiting the risk of incurring in overfitting when the size

of the training set is small. Moreover Bilinear Interpolation proved

to be sufficiently effective with respect to other parametric alternative

such as Gradient-based Upsampling [9, 106], so it’s worth taking it in

consideration.

4.1.3 Comparing ReSeg and ConvNets

The ReSeg model was initially presented as an innovative alternative

to the classical convolutional neural network models for image recogni-

tion. There are many similarities and differences between ReSeg and a

convolutional neural network. In this section we highlight a few points

of comparison between the two models.
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The main difference between the two architectures is that ReSeg

exploit short-range and long-range dependencies in the input learning

both local and global features at the same time, while ConvNets use

only local information. At each layer, both kind of networks apply the

same set of filters to patches of the input image or of the feature map

from the layer below. ReSeg, however, propagates information through

lateral connections that span across the whole image, while ConvNets

exploit local information only. The lateral connections should help ex-

tract a more compact feature representation of the input image at each

layer, which can be accomplished by the lateral connections remov-

ing/resolving redundant features at different locations of the image.

This should allow ReSeg resolve small displacements of features across

multiple consecutive patches.

Max-pooling layers are usually applied after each convolutional layer

over a small region in order to achieve local translation invariance. In

contrast, ReSeg does not use any pooling due to the existence of learned

lateral connections. The lateral connection in ReSeg can emulate the

local competition among features induced by the max-pooling. This

does not mean that it is not possible to use max-pooling in ReSeg.

The use of max-pooling in ReSeg could be helpful in reducing the di-

mensionality of the feature map, resulting in lower computational cost

but it might be hard to be inverted.

This is important in architectures such as ReSeg where the dimen-

sion of the input is repeatedly reduced by the encoder layers and it

has to be restored by decoder upsample layers. ReSeg is end-to-end

smooth and differentiable, making it suitable to be used as a decoder

also in auto-encoders or any of its probabilistic variants [114].

In some sense, each layer of the ReSeg can be considered as a variant

of a usual convolution+pooling layer, where pooling is replaced with

lateral connections, and convolution is done without any overlap.

4.1.4 Comparing ReSeg and Multi-Dimensional RNNs

Recurrent Neural Networks were originally developed as a way of ex-

tending neural networks to unidimensional sequential data. However

Graves et Al. [115] introduced more complex multi-dimensional re-

current neural networks, extending the applicability of RNNs to n-

dimensional data for computer vision, video processing, medical imag-

ing and many other areas. This kind of architecture, combined with



60 4.1. ReNet and ReSeg models

multi-directional hidden units and LSTM memory cells, showed its suc-

cess for offline Arabic handwriting recognition [57].

A multidimensional RNN, on the other hand, requires an exponen-

tial number of RNNs at each layer (2d). In ReSeg each patch of the

image is flattened over the feature dimension so the input sequence

remains uni-dimensional. The main important consequence of this ap-

proach is that the number of RNNs at each layer scales linearly with

respect to the number of dimensions d of the input image (2d).

Furthermore, the proposed variant is more easily parallelizable, as

each RNN is dependent only along a horizontal or vertical sequence of

patches. This architectural distinction results in our model being much

more amenable to distributed computing than that of [57]. Kalchbren-

ner et Al. [110] further extended many of the concepts from the multi-

dimensional RNN paper of [57], and bears some similarity to the ReSeg

approach. Grid LSTM inherently uses three dimensional blocks, and

modulates information passed over depth, while ReSeg simply stacks

hidden layers and requires less recurrent passes over the data. Kalch-

brenner et Al. [110] show promising results over a number of tasks,

including MNIST recognition, but do not have results for image seg-

mentation or larger image datasets as of this work.

4.1.5 Classification layer

Once the dimension of the image has been reconstructed by the up-

sampling layers, the feature maps go in input to a pixel-wise Softmax

classifier in order to predict the class label for each pixel and compute

the segmentation mask. The final output then has as many channels

as there are classes. We use a pixel-wise cross entropy loss function

where the loss is summed up over all the pixels in a mini-batch.

L(C,C∗) = − 1

n

∑

i

C∗i log(Ci) (4.11)

where Ci = ezi/
∑

c e
zi,c is the class prediction at pixel i given the

output z of the final ReSeg layer, and C∗ is the ground truth of the

segmentation mask.

In the next chapter we are going to show the implementation of the

system described so far and present the experimental results that we

obtained.
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Model implementation and

evaluation

In this chapter we give some insights on the implementation of the Re-

Seg architecture and we explain the choices that we made in the design

of the experiments that we perform. In particular we tested the per-

formance of the model on different dataset for semantic segmentation

of urban street scenes.

5.1 Libraries

The ResSeg architecture has been written in Python using two main

libraries that support the implementation of neural networks models:

Theano [13, 116] and Lasagne [12].

5.1.1 Theano

Theano is a Python library developed at the LISA laboratory of the

University of Montreal to support rapid implementation of efficient

machine learning algorithms. It allows to define, optimize and effi-

ciently evaluate symbolic mathematical expressions involving multi-

dimensional arrays, also known as tensor. When we are creating a

model with Theano first we have to define the symbolic expression that

we want to compute, then Theano builds the computational graph of

all the variables and operations that need to be performed to reach the

output values. This graph can be applied on specific inputs to obtain

the values of the outputs.
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Some of the most appealing features that Theano provides are:

• Automatic differentiation : Theano is able to automatically

compute the gradients of a symbolic expression. This allows to

implement only the forward pass of the model (the prediction)

and then to train it performing gradient descent on the gradient

computed by the library.

• Transparent use of the GPU : the same code can be run

either on CPU or GPU. More specifically, Theano will figure out

which parts of the computation should be moved to the GPU

automatically generating CUDA code.

• Speed and stability optimizations : Theano internally reor-

ganizes and optimizes the operations of the symbolic graph, in

order to make their computation run faster and be more numeri-

cally stable. It also can compile some operations into C code, in

order to speed up the computation.

Technically, Theano is not a machine learning library, as it does not

provide pre-built models ready to be trained. Instead, it is a mathemat-

ical library that provides tools to build machine learning models. For

this reason we decided to use a library such as Lasagne, which provides

an implementation for most of the current neural network components.

5.1.2 Lasagne

Lasagne is a machine learning library built on top of Theano which

provides the implementation of useful blocks making easy to build and

train neural networks models. The main reasons why we choose to

use Lasagne for the implementation of the ReSeg architecture are the

following:

• It is built on top of Theano, so it generally follows Theano’s con-

ventions and the methods typically accept and return Theano

expressions. This makes constructing commonly used network

structures easy but also allows to build more complicated models

such as ReSeg.

• It is mainly Object-Oriented : it provides an abstract class Layer

that can be extended to implement the components for any kind

of model. The class is a container for the parameters of the layer,
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the implementation method, and the method that returns the

output shape. An object layer is the basic block to build a neural

network, it takes as input a layer and it return another layer as

output making possible to stack several layers together and build

deep models.

• It provides methods to automatically infer the shape of the result

of a stack of layers.

• It provides reference implementations for many kind of models

and useful components for the training procedure such as opti-

mization and initialization methods which are highly optimized.

• It is supported by a growing community of researchers and devel-

opers.

5.2 Server configuration

We run all the experiments on a Ubuntu 14.04 server that mounted an

Intel Core i7-920 CPU (8M Cache, 2.66 GHz), 24G RAM memory, and

a NVIDIA GeForce GTX TITAN X graphics card with 12G GDDR5

memory.

5.3 Hyper-parameters

When we design an experiment, to verify the performance of a model on

a specific task, we need to make several decisions to choose the correct

value for all the hyper-parameters. Basically we can divide the hyper-

parameters in two types. The first ones are the hyper-parameters that

are specific for the model, which in the case of ReSeg are the following:

ReSeg hyper-parameters

• Dimension of the patches is the portion of the input that is

processed at each step by the recurrent networks and represents

the local context that is considered around each pixel. It also

determines the downscale factor after each Reseg layer.

• Number of layers is the depth of the network, and it specifies

how many ReSeg layers are stacked together.
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• Number of neurons per hidden layer specifies the number

of hidden units of each recurrent layer of the model.

• Kind of the recurrent unit specifies if we are using a GRU or

LSTM memory unit.

• Stacking the recurrent sub-layers: the input of each ReSeg

layer can be scanned by 4 RNNs in parallel or can be processed by

2 sub-layers stacked together. In the latter case the first sub-layer

scans the input in the vertical direction, then the second recurrent

sub-layer scans the output of the first recurrent sub-layer in the

horizontal direction.

• Upsampling layer specifies if the we use a the Linear fully-

connected layer, a Transposed Convolutional layer, or simply Bi-

linear Interpolation to reconstruct the initial dimension of the

input after that has been reduced by the ReSeg layers.

• Activation functions are the nonlinearities that are applied

after each Transposed Convolutional layer.

Training hyper-parameters

These second type of parameters are more general and are involved in

many kind of models:

• Number of epochs is the number of times the entire training set

is scanned by the training algorithm. There are many techniques

to decide when to stop training the model before it overfits 1. For

instance, in our experiments we use early stopping : it requires

to split the examples in the dataset in 3 subsets: training set,

validation set and testing set. The training stops after that the

error on the validation set begins to increase significantly even

though the error on the training set continues to decrease. This

happens when the network starts to overfit the training set and

stopping the training with early stopping avoids this issue.

1Overfitting is the opposite of the concept of generalization and happens when the

model is learning to classify the examples of the training set, but is not able to correctly

classify other examples never seen before. This means that the model is not learning the

representation behind the data but also the noise present in the training dataset.
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• Weight decay is a regularization technique that adds a penalty

to the cost function based on the l2-norm of the weights. This

penalty is applied in order not to let the weights increase too

much which could be a cause of overfitting.

• Optimization method is the algorithm that optimize the loss

function. Usually it is the Stochastic Gradient Descent, but it

can be any variant of it.

• Learning rate is the step-size that is applied in the weights

update equation.

• Mini-batch size determines the number of examples B to be

contained in each iteration of the training procedure. When B =

1 this is the original stochastic gradient descent setting, when B

is equal to the size of the training set then this is the standard

(also called “batch”) gradient descent. We define as mini-batch

size any intermediate value of B where the update rule is based

on an average of the gradients inside each block of B.

• Weights initialization is the way the weights of our models

are initialized. There are many ways to initialize the parameters

of a model. In this work, we initialize the weights following the

initialization procedure described by Glorot & Bengio [28] and

by He et Al. [29]. A good initialization is important to help the

optimization method to rapidly converge to a solution.

5.4 Designing the experiments

In their preliminary work Visin et Al. [2] tested the performance of

the ReSeg model on simple datasets such as Weizmann Horse [117],

Fashionista [118] and Oxford Flower [119] performing binary classifi-

cation to assess the ability of the model to separate background from

foreground.

In this work we first implemented the ReSeg architecture in Lasagne

to perform multi-class semantic segmentation, then we tested its per-

formance on more complicated datasets specific for urban street scene

understanding. To accomplish this task we needed to accurately design

the experiments in order to understand which is the architecture that

achieves the best performance on the Semantic Segmentation task.
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As we have seen in the chapters 2 and 3 Convolutional Neural net-

works have been extensively studied for computer vision tasks. On the

other hand there are only few works that use fully recurrent models for

image understanding, this makes the analysis of the ReSeg architecture

hard and full of uncertainties on which are the correct value to pick for

the hyper-parameters.

Deep Neural Networks typically require a long time to train, so

performing hyper-parameter search can take many days or even weeks.

It is important to stress on this fact since it influences the design of

the experiments. To make an example of the complexity of our model,

training a basic ReSeg configuration on the CamVid dataset [3] requires

from 10 to 14 hours on a NVIDIA GeForce GTX TITAN X, which is

one of the top GPU available on the market. It is clear that the explo-

ration of the entire space of the hyper-parameters of the model would

be infeasible since it would require too much time and computational

power.

Usually a random search optimization is performed having a worker

that continuously samples random hyper-parameters and performs the

optimization. During the training, the worker keeps track of the vali-

dation performance after every epoch, and writes a model checkpoint

taking notes of training statistics such as the loss over time, the norm

of the gradients and all the informations that can be useful to assess

the quality of the training. Then there is a second program, the master,

which launches or kills workers across a computing cluster, and may

additionally inspect the checkpoints written by workers and plot their

training statistics, etc.

We do not claim this work to be an exhaustive exploration of the

space of the hyper-parameters of the ReSeg model, but a first attempt

to have a good degree of sensitivity on the main parameters and be able

to design more complex architectures in the future. The first obstacle

to overcome is the fact that the number of hyper-parameters of the Re-

Seg architecture is quite high and the possible number of experiments

quickly explodes. A study like this requires running thousand of exper-

iments and so a computational power that is not commonly available

in every research laboratory. For this reasons we need to trade-off the

quality of the solution and the exploration of the space of the hyper-

parameters so we decided to use a greedy approach for the design of

the experiments. This of course implies reaching sub-optimal solutions
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but it allows to explore the space of the parameters focusing only on

the most promising configurations of hyper-parameters and performing

a reasonable number of experiments. Indeed, ReSeg has been recently

proposed and its potentialities has never been fully explored. Our aim

is to have a first understanding of the strengths and the weaknesses

of the model, and figure out how to solve the issues involved in the

semantic segmentation task in order to obtain acceptable results. Our

work wants also to be an analysis of the performance of the model

compared to the other state-of-the-art models.

The “greedy optimization procedure” can be summarized in the

following steps:

1. First we fix most of the general hyper-parameters such as the op-

timization method and the weights initialization approach. This

reduces the number of hyper-parameters to be explored, focusing

only on the ones that are specific of the model and that give us

an understanding of the expressiveness and the power of ReSeg.

2. In our first experiments we also fix parameters that are specific

of the model, such as the kind of recurrent unit and the number

of layers to further reduce the space of the hyper-parameters.

3. We modify the architecture one parameter at the time according

to the results obtained from the experiments in order to improve

the performance and to solve the issues that we discover during

the analysis.

Now we are going to explain the motivations behind the choices of

the hyper-parameters.

5.4.1 Optimization method

One of the most critical hyper-parameter when we train a model with a

gradient based learning algorithm involves the choice of the optimiza-

tion method. In the literature the stochastic gradient descent (SGD)

or its variant with momentum are widely used in training deep neural

networks but they require to correctly tune the learning rate (and the

momentum parameter) so that the training does not get stuck after

few iterations. There are several issues to take into account when we

choose the optimization method:
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• Choosing a proper learning rate can be difficult. A learning rate

that is too small leads to painfully slow convergence, while a learn-

ing rate that is too large can hinder convergence and cause the

loss function to fluctuate around the minimum or even to diverge.

• It is a good practice to choose a learning rate schedule to try

to adjust the learning rate during the training by e.g. annealing,

i.e. reducing the learning rate according to a pre-defined policy or

when the change in objective between epochs falls below a thresh-

old. These schedules and thresholds, however, have to be defined

in advance so they do not adapt to the dataset’s characteristics

during the training procedure.

• We might not want that the same learning rate applies to all the

parameter updates. Instead of updating all the parameters to the

same extent, we prefer a per-parameter learning rate.

• Depending on the shape of the loss function, the optimization

problem can be very hard. A key challenge in minimizing highly

non-convex error functions is the presence of saddle points [87],

i.e. points where one dimension slopes up and another slopes

down. These saddle points are usually surrounded by a plateau

of the same error, which makes it notoriously hard for SGD to

escape, as the gradient is close to zero in all dimensions.

Among the many variants of the SGD algorithm that have been pro-

posed to take into account these issues we decided to use the Adadelta

algorithm [26] for our experiments. This method does not require to

manually tune the learning rate so it allows us to avoid a lot of exper-

iments to choose the correct value. Moreover Adadelta uses a different

learning rate for every parameter of the model θi (i.e. the weights of

each layer) so that each dimension has its own dynamic rate. The ba-

sic idea behind Adadelta is to adjust the learning rate per-parameter

according to a smoothed sum of the previous gradients computed on

a fixed window. Intuitively this means that frequently occurring fea-

tures get a smaller learning rate (because the sum of their gradients is

larger), and rare features get a larger learning rate. Adadelta showed

to perform very well on the training of the ReSeg model rapidly con-

verging to a good solution. A detailed explanation of the algorithm

can be found in the original work of Matthew Zeiler [26].
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Shuffling the dataset

One final but important detail on the optimization of the loss function

regards the order in which we present the training data. Generally, we

want to avoid providing the training examples in a meaningful order

to our model as this may bias the optimization algorithm and lead to

poor convergence. This is crucial in our case since the datasets are

sampled from video sequences and the network might simply memorize

the order in which we feed the samples. A good and efficient method

to avoid this issue is to randomly shuffle the data before each epoch of

training.

5.4.2 Choice of the recurrent unit

To address the task of semantic segmentation with recurrent networks

the ReSeg model processes recursively patches of the input scanning

the entire image in the four directions. These patches are processed

sequentially by each recurrent layer by means of a learning procedure

that involves many steps depending on the dimension of the patches

and the dimension of the image in order to capture short and long range

dependencies between the pixels of the image and learn both local and

global features. As we described in the chapter 2 Recurrent Neural

Networks suffer from two main issues called vanishing and exploding

gradient that can make the training procedure hard or even impossible.

In the case of semantic segmentation this is a main issue, in fact it is

important that the model is able to model dependencies between pixels

that are close together but also pixels that are far apart. To solve this

problems LSTM and GRU architecture have been proposed showing

their ability to model long-range dependencies.

GRUs have been proposed by Cho et Al. [48] and the capabilities

of this kind of model have not been fully explored yet. According to

the empirical evaluations made by Chung et. Al [66] there is not a

clear winner between the GRU and the LSTM architectures. In many

tasks both architectures yield comparable performance so tuning hyper-

parameters like the hidden layer size is probably more important than

picking the ideal architecture.

For our experiments we decided to use Gated Recurrent Units be-

cause they are simpler than LSTMs and have less parameters. More-

over the initial experiments performed by Visin et. Al [2] showed that
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this type of recurrent unit works well for the task of semantic segmen-

tation and so we started out analysis from their results.

We have to acknowledge that the choice of GRU over LSTM unit

can also be motivated by the fact that the datasets that we are using for

testing the ReSeg model have a limited number of examples available

for the training, so reducing the complexity of the model and restricting

the number of parameters can reduce the risk of incurring in overfitting.

5.4.3 Stacked Recurrent layers

When we introduced the model in chapter 4 we described two different

kind of layers that are present in our architecture: the recurrent hori-

zontal sublayer and the recurrent vertical sublayer. These two kind of

sublayers can be either stacked or concatenated together forming the

recurrent layer or ReSeg layer that is in charge to learn both global

and local features to be used for the segmentation task. For the ex-

periments we decided to stack the sublayers in order to have more

compact feature maps representation O i.e., the dimension of each ele-

ment o(i,j) ∈ R2U instead of o(i,j) ∈ R4U . Stacking the sublayers makes

the network deeper and allows the model to capture higher-level pixel

interactions and learn more complex representations.

5.4.4 Number of Recurrent layers

For our first analysis we use just 2 ReSeg layers. Of course stacking

more layers is possible but this would require a bigger amount of train-

ing data in order to prevent the model from overfitting. At the time

we started this work the only available datasets specific for seman-

tic segmentation of a urban street scene were CamVid [3] and Daim-

ler [14] but the number of available examples was very low, respectively

367 and 300 . Moreover the Daimler dataset has only 5 classes with

highly unbalanced distribution, so for the first experiments we used

only the CamVid dataset. At a later time, the Cityscapes dataset [4]

has been released providing 5000 fine-annotated examples, allowing to

test deeper and more complicated models, as presented in the Section

5.7 of this chapter.
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5.4.5 Preprocessing

Before to be fed as input to the network, the input data can be pre-

processed in order to prepare the data for the training. Common data

preprocessing techniques include mean subtraction and normalization.

In particular for our experiments we decided to test a particular type

of preprocessing called Local Contrast Normalization.

Local contrast normalization (LCN)

Local contrast normalization (LCN) [120] is a preprocessing method

that normalizes the contrast of an image in a non-linear way. Instead

of performing a global normalization based on the range of values of

the entire image, LCN operates on local patches of the image on a per

pixel basis. The local normalization normalizes the mean and variance

of an image around a local neighborhood. This is done by removing

the mean of a neighborhood from a particular pixel and dividing by

the variance of the pixel values where the mean and the variance are

smoothed by a Gaussian weighting window.

g(x, y) =
f(x, y)−mf (x, y)

σf (x, y)
(5.1)

where f(x, y) is a pixel of the image, and mf (x, y) , σf (x, y) are respec-

tively the local mean and the local variance computed on a 9x9 patch

around the pixel. Local Contrast Normalization can be used to:

• correct non-uniform scene illumination reducing the dynamic range

(e.g it increases the contrast in shadowed parts). In the urban

street context, or more in general when the images are acquired

in an outdoor environment, this can be of great help.

• highlight edges, which leads the network to learn better

category shapes.

5.4.6 Performance indexes

To compare the quantitative performance of the different ReSeg vari-

ants, we rely on three commonly performance measures used for se-

mantic segmentation:
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• The global accuracy (G) measures the percentage of pixels cor-

rectly classified in the dataset:

G =
correctly predicted pixels

total number of pixels
=

TP

TP + FN
, (5.2)

where TP, FP are the numbers of true positive, false positive

pixels, respectively, determined over the whole test set.

• The class average accuracy (C) is the mean of the accuracy

computed over all the classes:

C =
1

n

∑

ci ∈ classes

G(ci), (5.3)

where G(ci) is the global accuracy computed for each individual

class.

• The mean Intersection over Union (IoU) is the hardest met-

ric since it penalizes false positive predictions unlike class average

accuracy. The IoU metric is computed for each class individually

and then is averaged.

IoU =
TP

TP + FN + FP
. (5.4)

5.5 First experiments on CamVid Dataset

The dataset that we choose for the initial experiments is the Cambridge-

driving Labeled Video Database (CamVid) [3]. We used the same sub-

set of 11 class categories as SegNet [5] for experimental analysis in. A

small number of pixels were labelled as void, which do not belong to

one of these classes and are ignored for the evaluation. The dataset is

split into 367 training, 101 validation and 233 test images. To make

our experimental setup the same as [5], we scaled all the images by a

factor of 2 at 480× 360 resolution.

5.5.1 Number of hidden units

The first experiments were designed in order to find the correct size of

the hidden layers. These tests were fundamental in order to assess the

capacity of the network for the task of semantic segmentation.
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1 [2× 2]− [1× 1] [50, 50] 85.4 64.6 52.2 96.3 82.6 41.4 97.8 69.4 77.3 39.8 19.9 86.7 58.6 40.5

2 [2× 2]− [1× 1] [50, 100] 85.6 62.2 51.5 95.0 83.8 32.3 98.3 68.8 81.7 36.7 13.8 82.7 50.7 40.1

3* [2× 2]− [1× 1] [100, 100] 86.6 63.5 52.9 94.2 86.5 41.4 97.4 76.1 80.5 34.4 10.7 81.8 51.0 44.4

4 [2× 2]− [1× 1] [100, 200] 85.2 62.2 50.9 95.9 82.8 36.4 97.9 75.5 73.0 40.9 7.3 85.2 50.1 39.1

5 [2× 2]− [1× 1] [200, 200] 79.9 52.5 41.6 93.1 73.5 20.2 97.2 61.0 70.0 21.5 6.5 87.2 33.8 13.2

6 [2× 2]− [2× 2] [100, 100] 85.0 59.4 47.9 94.2 78.9 22.3 97.3 78.0 83.3 32.1 12.8 87.3 48.7 18.5

7 [2× 2]− [2× 2] [100, 200] 85.3 61.2 50.4 93.6 85.4 26.9 96.5 82.6 70.4 43.5 19.0 81.1 40.8 33.3

8 [2× 2]− [2× 2] [200, 200] 83.6 57.5 46.8 93.2 84.2 27.3 97.0 76.1 65.1 26.8 10.7 84.3 29.5 38.5

9 [2× 2]− [2× 2] [100, 400] 82.2 51.4 42.9 91.0 78.0 17.6 97.1 67.3 83.5 13.3 3.6 78.0 19.7 16.3

10 [3× 3]− [1× 1] [100, 100] 82.1 57.4 45.7 92.7 73.7 22.2 97.0 76.6 73.0 36.6 14.6 89.8 32.0 23.6

Table 5.1: Comparison of the quantitative results of the ReSeg basic model with 2

recurrent layers and using different number of hidden units and patch size on

CamVid dataset [3]. (*) indicates the best candidate configuration.

In the table 5.1 we can see the comparison of the performance of the

ReSeg model with different hidden layer sizes maintaining the same ba-

sic configuration for each experiment. We call ReSeg basic the model

that uses 2 recurrent layers and the Linear fully-connected upsampling

layer. In this set of initial experiments, in order to have a better un-

derstanding of the capacity of the model, we did not use any kind of

data preprocessing or data augmentation.

All the model variants have been trained using a mini-batch size

of 1 example, corresponding to the classic stochastic gradient descent

setting.

We tested several configuration for the number of neurons of the

hidden layers and the dimension of the patches.

First we fixed the patch size of the first ReNet layer to be 2×2: this

has the role to down-sample the input reducing the computational cost

and the training time without discarding any information, since each

patch is squashed on the channel dimension and processed by the ReNet

layer. The second hidden layer scans the input pixel by pixel preserving

its original size. Then we designed different experiments varying the

size of the hidden layers in order to find the correct dimension.

Increasing the dimension of the patch of the second ReNet layer

(Experiments 6-9) seems not to add any benefit. On the contrary

further reducing the dimension of the feature maps makes difficult to

reconstruct the original input size and degrades the quality of the final

segmentation mask.

We decided to choose as best candidate for the dimension of the
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Figure 5.1: Plot of the training, validation and test error for all the performance indexes

in Experiment 1.
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Figure 5.2: Plot of the training, validation and test error for all the performance indexes

in Experiment 2.
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hidden layer the experiment configuration number 3, marked with (*)

since it achieves the highest mean IoU index that is the reference per-

formance for a good quality segmentation. Moreover looking at the

plots in Figures 5.1 and 5.2 we can see that the experiment number

1 might underfit the dataset due to the size of the hidden layers be-

ing too low. A good initial compromise seems to be the (100, 100)

configuration of experiment 3.

5.5.2 Size of the mini-batch

Choosing the mini-batch size B involves a trade-off between the con-

vergence of the optimization procedure and the training time. When

B increases we can take advantage of the parallelism and the efficient

matrix-matrix multiplications provided by the GPU instead of comput-

ing separate matrix-vector multiplications. This often allows to gain a

good improvement in the overall training time. On the other hand, as

B increases, the number of updates per computation done decreases,

which slows down convergence since less updates can be performed in

the same computing time.

We tested a mini-batch size of 1, 5 and 9 using the best candidate

architecture defined in the previous experiments. We did not explore

bigger batch size because of the memory limit of the GPU.

Looking at the Table 5.2, it results that B = 5 in combination

with the Adadelta algorithm is a good value for the mini-batch size

improving the class average accuracy and the mean IoU index at the

expense of the global accuracy. A larger mini-batch does not seems to

improve the performance, probably requiring extra epoch iterations in

order to achieve the same results of smaller mini-batches.

In particular we have to note that the dimension of the training set

and the variability of the distribution of the CamVid dataset examples

is very limited, for this reason the optimization may benefits by a

noisier estimation of the gradient. The better test results observed with

smaller B may be explained with a better exploration of the parameter

space and a form of regularization both due to the “noise injected” by

the gradient estimator [121].
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ReSeg basic 1 2 [2× 2]− [1× 1] [100, 100] 86.6 63.5 52.9 94.2 86.5 41.4 97.4 76.1 80.5 34.4 10.7 81.8 51.0 44.4

ReSeg basic 5* 2 [2× 2]− [1× 1] [100, 100] 85.6 65.5 54.0 95.6 83.9 43.9 98.3 64.5 81.2 41.9 13.6 81.8 65.9 49.5

ReSeg basic 9 2 [2× 2]− [1× 1] [100, 100] 84.3 60.7 48.7 94.0 83.0 31.6 98.2 53.0 85.0 31.6 12.1 87.1 58.8 32.7

Table 5.2: Comparison of the quantitative results of the ReSeg basic model on CamVid

dataset [3] with different mini-batch sizes.

5.5.3 Class Balancing

The first thing that can be noticed by the results of the experiments

in Tables 5.1 and 5.2 is that the average class accuracies of the classes

pole column, sign signal and fence are quite low with respect to the

other classes. This is due to the fact the frequencies of the classes over

the pixels are highly imbalanced. In the semantic segmentation task

this is a known issue indeed. Taking as example the urban street con-

text, objects like buildings or cars are much more frequent in the scene

with respect to poles and sign signals. Moreover the quantity of pixels

annotated as building is much more than the pixels annotated as poles

or sign signal due to the dimension in the image. Road, sky, building

pixels are approximately 40-50 times more than pedestrian, poles, sign

symbols, cars, bicyclists in the dataset making it very challenging to

label smaller categories. This pushes the network to prefer to minimize

the loss by learning to classify the high-occurrence classes really well

and to ignore the low-occurrence ones since they have less effect on the

loss function.

If we have to perform a classification on an unbalanced dataset, a

typical solution would be to augment the dataset replicating the sam-

ples for the low-occurrence class. In a semantic segmentation task this

is not possible since each image does not correspond to a single predic-

tion like it happens in image classification, but we have a prediction

for each pixel. In this case replicating low-occurrence samples would

require to replicate some patches of the images, but this is not feasible

since there is a structure among pixels that can’t be ignored, so aug-

menting the dataset should be done by hand and this would require

the same or more time that would require collecting more data.

An alternative solution to this issue is to work directly on the loss

function and train a more balanced version of our model by re-weighting

each class in the cross-entropy loss. The loss function takes the follow-
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ReSeg basic 1 86.6 63.5 52.9 94.2 86.5 41.4 97.4 76.1 80.5 34.4 10.7 81.8 51.0 44.4

ReSeg basic + Class Balancing 1 84.5 71.9 50.2 92.1 75.5 53.8 96.8 81.9 79.0 58.1 30.2 83.7 78.3 61.7

ReSeg basic 5 85.6 65.5 54.0 95.6 83.9 43.9 98.3 64.5 81.2 41.9 13.6 81.8 65.9 49.5

ReSeg basic + Class Balancing * 5 87.4 72.7 54.8 93.4 84.5 55.4 96.0 82.7 83.0 53.9 23.3 86.6 83.1 57.4

Table 5.3: Comparison of the quantitative results of the ReSeg basic model with class

balancing on CamVid dataset [3]. All the experiments share the same basic setup: 2

ReSeg layers with [100, 100] hidden units, and patch size [2×2]− [1×1]. (*) indicates

the best configuration.

ing form:

L(C,C∗) = − 1

n

∑

i

α(C∗i )C∗i log(Ci) (5.5)

where Ci = ezi/
∑

c e
zi,c is the class prediction at pixel i given the out-

put z of the Softmax layer at the end of the ReSeg network, and C∗ is

the ground truth of the segmentation mask.

In particular we use a median frequency balancing [10] where the

weight assigned to each pixel in the loss function is the ratio of the

median of the class frequencies computed on the entire training set

divided by the class frequency:

α(c) = median frequency/f(c) (5.6)

where f(c) is the number of pixels of class c divided by the total number

of pixels in the images where c is present, and median frequency is

the median of these frequencies.

The class balancing implies that larger and/or more frequent classes

in the training set have a weight smaller than 1 and the weights of

the smallest classes are the highest trying to give more importance

to the classes that are less represented in the dataset and penalizing

the learning for the larger classes. We found class weighting to be

important for semantic segmentation as it shown by the comparison of

the experiments in Table 5.3.

On the same track of the previous experiments, we took the con-

figurations on which we obtained the best results and we trained the

same model with the class-balanced cross entropy obtaining the results

in Table 5.3.

As we can see from Table 5.3 the performance of the class-balanced

experiments have a boost in the average class accuracy of more than
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8%. We improved the accuracy of the low-occurrence classes, in par-

ticular of the sign-symbol, the column pole and the pedestrian classes,

almost 10%.

Figure 5.3: ReSeg qualitative results on CamVid road scene understanding

dataset [3]. The top row is the input image, with the ground truth shown in the

second row. The third row shows ReSeg’s segmentation prediction, while the fourth

row shows the class balanced predictions. In general, we observe high quality segmen-

tation, especially on more difficult classes such as poles, people and cyclists. In the last

example we see that the model fails to classify the sidewalk and many sign symbols,

but the class balanced version is more accurate.

On the other hand the mean IoU index does not benefit of the in-

troduction of the class balancing. Indeed, the mean IoU is even 0.3%

lower in the case of mini-batch size 1, and improves only by 0.8% using

a mini-batch size equals to 5. The predicted segmentation masks in Fig-

ure 5.3 show that the low occurrence classes are actually more present

in the output mask, but a lot of pixels are misclassified because of the

aggressive policy of re-weighting. We can see that the class-balanced

segmentation presents more sign symbols and column poles that are
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ReSeg basic - 86.6 63.5 52.9 94.2 86.5 41.4 97.4 76.1 80.5 34.4 10.7 81.8 51.0 44.4

ReSeg basic LCN (mean sub) 84.8 65.1 52.6 94.7 81.5 36.8 97.4 68.9 80.3 42.8 34.3 78.1 53.5 47.9

ReSeg basic LCN (mean sub + div std) 85.4 63.8 51.9 91.9 82.3 39.2 97.2 76.6 84.2 32.5 25.1 75.9 56.2 40.5

ReSeg basic + Class Balancing - 84.5 71.9 50.2 92.1 75.5 53.8 96.8 81.9 79.0 58.1 30.2 83.7 78.3 61.7

ReSeg basic + Class Balancing LCN (mean sub) 83.9 71.8 49.8 91.1 73.6 56.9 94.8 89.3 81.3 61.5 41.7 69.2 80.3 49.7

Table 5.4: Comparison of the quantitative results of the ReSeg basic model with and

without LCN preprocessing on CamVid dataset [3]. All the experiments share the

same basic setup: 1 minibatch, 2 ReSeg layers with [100, 100] hidden units, and patch

size [2× 2]− [1× 1].

correctly classified with respect to the unbalanced prediction. Also the

sidewalk class benefits from the class weighting, that gives less impor-

tance to the road class. However the predicted masks are noisier since

the probability of the underrepresented classes is overestimated and

leads to an increase in misclassified pixels in the output segmentation

mask.

We need to stress that the IoU metric is not optimized directly

through the class balanced cross-entropy loss. The role of the class

balancing is to bias the classification towards the low-occurrence class

incrementing the probability that a given pixel is classified as one of

those classes.

5.5.4 Adding Local Contrast Normalization

We decided to exclude the data preprocessing step from the first experi-

ments in order to fully understand the ability of the model to assign the

correct label simply by processing the raw data without any additional

step. However it is useful to test the use of the preprocessing since it

could improve the final results and speed the learning. In particular we

want to understand if a data preprocessing step can help the network

to understand the correct label category in unclear situations. In an

outdoor environment such as the urban street context, it is frequent to

have different illumination and weather conditions that can make hard

the prediction task. We tested Local Contrast Normalization because

it has the remarkable property to normalize local patches of the image

instead of the entire image.

We experimented two version of the LCN preprocessing, the first one

just subtracts the local (gaussian smoothed) mean of the local patch,
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CRF models

Super Parsing [76] 83.3 51.2 n/a 87.0 67.1 96.9 62.7 30.1 95.9 14.7 17.9 1.7 70.0 19.4

Boosting+Higher order [72] 83.8 59.2 n/a 84.5 72.6 97.5 72.7 34.1 95.3 34.2 45.7 8.1 77.6 28.5

Boosting+Detectors+CRF [73] 83.8 62.5 n/a 81.5 76.6 96.2 78.7 40.2 93.9 43.0 47.6 14.3 81.5 33.9

Neural Network based models

SegNet-Basic (layer-wise training [106]) 84.3 62.9 n/a 75.0 84.6 91.2 82.7 36.9 93.3 55.0 37.5 44.8 74.1 16.0

SegNet-Basic [5] 82.8 62.3 46.3 80.6 72.0 93.0 78.5 21.0 94.0 62.5 31.4 36.6 74.0 42.5

SegNet [5] 88.6 65.9 50.2 88.0 87.3 92.3 80.0 29.5 97.6 57.2 49.4 27.8 84.8 30.7

ReSeg basic + Class Balance 87.4 72.7 54.8 84.5 83.0 93.4 86.6 53.9 96.0 83.1 23.3 55.4 82.7 57.4

Sub-model averaging

Bayesian SegNet-Basic [98] 81.6 70.5 55.8 75.1 68.8 91.4 77.7 52.0 92.5 71.5 44.9 52.9 79.1 69.6

Bayesian SegNet [98] 86.9 76.3 63.1 80.4 85.5 90.1 86.4 67.9 93.8 73.8 64.5 50.8 91.7 54.6

Table 5.5: CamVid. The table reports the per-class accuracy, the average per-class

accuracy, the global accuracy and the average intersection over union. The best values

and the values within 1 point from the best are highlighted in bold for each column.

while the second also normalizes by the local standard deviation. For

all the experiments we use a patch size of 9 × 9 as suggested in the

original paper [120].

From the results in Table 5.4 it seems that the model does not

require any particular data preprocessing. This can be explained by

the fact that ReSeg network exploits the correlation between the pixels

while LCN does exactly the opposite, decorrelating the pixels in the

same patch. Indeed, the combination of a subtractive and divisive LCN

can be considered as a kind of approximate whitening.

The application of a preprocessing step combined with the ReSeg

model require further investigation that is not the scope of this work.

For this reason we no longer consider preprocessing in the next exper-

iments.

5.6 Results on CamVid dataset

We can summarize our results so far and compare them with the state

of the art models.

As reported in Table 5.5, our model exhibits state-of-the-art perfor-

mance in terms of IoU when compared to both standard segmentation

methods and neural network based methods, showing an increase of

4.6% w.r.t. the recent SegNet model. It is worth highlighting that

incorporating sub-model averaging to SegNet model, as in [98], boosts

the original model performance, as expected. Therefore, introducing

sub-model averaging to ReSeg would also presumably result in a signif-
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CRF models

Super Parsing [76] 83.3 51.2 n/a

Boosting+Higher order [72] 83.8 59.2 n/a

Boosting+Detectors+CRF [73] 83.8 62.5 n/a

Neural Network based models

SegNet-Basic (layer-wise training [106]) 84.3 62.9 n/a

SegNet-Basic [5] 82.8 62.3 46.3

SegNet [5] 88.6 65.9 50.2

ReSeg basic + Class Balance 87.4 72.7 54.8

VGG-16 + ReSeg + Class Balance 88.1 72.5 60.3

Sub-model averaging

Bayesian SegNet-Basic [98] 81.6 70.5 55.8

Bayesian SegNet [98] 86.9 76.3 63.1

Table 5.6: CamVid. The table reports the per-class accuracy, the average per-class

accuracy, the global accuracy and the average intersection over union. The best values

and the values within 1 point from the best are highlighted in bold for each column.

icant increase of the performance. However, this remains to be tested

since it is not the core of this thesis.

We see that the proposed model can be used for semantic segmen-

tation reaching state of the art performance compared to fully con-

volutional based models. What we can understand from the output

prediction masks is that the network is able to make a correct infer-

ence in most of the situations but there are some cases in which the

model fails.

Observing the CamVid dataset we see that most of the images have

the same structure, i.e., the buildings, the sidewalks, the vegetation

are usually on the left and right sides of the camera while the vehicles

are in front of it. There are only few examples in which the structure

of the scene changes and it happens when the vehicle on which it is
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Figure 5.4: An example of test image that the network is not able to correctly predict

mounted the camera turns left or right (see Figure 5.4). In this cases

it happens that the position of the buildings, the trees and the other

classes in the scene are not anymore on the left or right, but in front of

the camera. These cases are very hard to be predicted by the network

since the amount of training examples with the classes in this kind of

spatial configuration are very few.

This is important to notice because it seems that the network is

able to learn a spatial prior on the distribution of the classes. This

depends on the low variability of the training examples. The network

is trained with most example having the objects in the scene with the

same structure, so it learns to predict that spatial configuration since it

expects the classes to be distributed in specific locations of the image.

Another example of misclassification is pointed out in Figure 5.5.

Here the ReSeg network fails to label the car, however, it fills this part

with buildings, trees and sidewalks that are very reasonable predictions

due to the position of the bus in the scene.

We want to stress that these kind of artifacts and misclassification

are not a limitation of our model, but they are mostly due to the poor

quality of the dataset. After several experiments it seems evident that

CamVid dataset is not sufficiently rich of examples to properly train

deep neural networks models. The potentiality of deep models like

ReSeg can be better exploited by using a dataset that fully represents

the real world distribution of the classes. Using deep models with small

datasets like CamVid can be useful to have a first understanding of the

ability of the model to perform the task, but in order to achieve good

generalization performance we need to train it with more examples.
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Figure 5.5: An example of misclassification filled with reasonable predictions.

5.7 Combining ReSeg with Convolutional Models

The first set of experiments on the CamVid dataset showed that a fully

recurrent architecture such as ReSeg achieves comparable state of the

art performance with respect to the convolutional models by exploring

the spatial correlation between pixels in the images.

In this second batch of experiments we extend the ReSeg architec-

ture by adding several convolutional layers before the ReNet layers.

Convolutional networks proved their ability to extract general feature

representations for many computer vision tasks, and they have been

successfully applied to semantic segmentation, so it is natural to see

if they can combine with recurrent neural networks in order to exploit

the strenghts of both the architectures.

The ConvNet is in charge to extract a hierarchical feature repre-

sentation. Then the recurrent layers combine the features extracted

by the convolutional layers and model the long-term spatial dependen-

cies. The last part of the architecture consists of the upsampling layers

that restore the original size of the input. We tested both transposed

convolutional and bilinear interpolation layers for this task showing

comparable performances.

5.7.1 VGG-16

Several convolutional architectures have been presented in the last

years, mostly for Image recognition and classification. Some of the

most famous are known with the name of LeNet [122], AlexNet [38],

GoogLeNet [39] and VGGNet [91].

Many semantic segmentation architectures such as SegNet [5], the

works of Long et. Al [9] and Chen et. Al [99] are based on VGGNet

or one of its derivations. In fact, although it was initially presented for

image classification tasks, it was later found the VGG ConvNet features
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outperform those of GoogLeNet in multiple transfer learning tasks. For

instance, Long et. Al [9] compared AlexNet, GoogLeNet and VGG-16

finding that VGG-16 achieves the best performance for the semantic

segmentation. For this reason the VGG-16 network is currently one of

the most preferred CNN-based choice to extract features from images,

hence we decide to adopt it in our work as well.

The VGG-16 network is an homogeneous architecture that only

performs 3 × 3 convolutions and 2 × 2 pooling from the beginning to

the end. The input image passes through 5 groups of convolutional

layers, conv1 - conv5, and 5 max-pooling layers pool1 - pool5, where

the filters have a very small receptive field of 3× 3, that is the smallest

size in order to capture the notion of left/right, up/down, center. The

Max-pooling is performed after each convolutional group, over a 2× 2

pixel window, with stride 2.

The convolution stride of each convolutional layer is fixed to 1 pixel,

as well as the spatial padding in order to preserve the spatial resolution

after the 3×3 convolution operation. A stack of two 3×3 convolutional

layers (without spatial pooling) has an effective receptive field of 5×5,

while three such layers have a 7× 7 effective receptive field.

Using a stack of three 3× 3 convolutional layers instead of a single

7 × 7 convolutional layer has two important advantages. First, it in-

corporates three ReLU nonlinearities instead of a single one, second, it

decreases the number of parameters from C × (7 × 7 × C) = 49C2 to

3× (C × (3× 3× C)) = 27C2 where C is the number of channels.

Intuitively, stacking convolutional layers with small filters as op-

posed to having one convolutional layer with big filters allows to ex-

press more powerful features of the input, and with fewer parameters,

at the expense of the memory required to hold all the intermediate

results of the convolutional layers to compute backpropagation.

5.7.2 Adapting the VGG-16 network

We removed the fully connected layers from the original architecture,

and we used the remaining layers which include 5 groups of convolu-

tional layers { conv1, conv2, conv3, conv4, conv5 } and 5 max-pooling

layers { pool1, pool2, pool3, pool4, pool5 }.
One of the biggest issues in adapting a convolutional architecture

for image recognition to perform semantic segmentation is given by the

fact that each max-pooling layer reduces the size of the feature map by
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a half compromising the quality of the prediction and leading to coarse

segmentations. In the case of VGG-16, after all the max pooling layers,

the size of the feature maps is reduced by a factor of 32.

Decreasing the stride of the pooling layers is the most straightfor-

ward way to obtain finer predictions, therefore we decrease the strides

of the layers pool4 and pool5 from 2 to 1 in order to have a final down-

sampling factor of 8.

Then we stacked a pixelwise recurrent ReNet layer [1 × 1] that

scans horizontally and vertically the features maps extracted by the

convolutional layers and models long-term dependencies. The final

architecture is depicted in Figure 5.6.

Batch Normalization

Batch Normalization (BN or BatchNorm) is a recently developed tech-

nique by Ioffe and Szegedy [123] for accelerating deep neural network

learning. The authors suggest that the change in the distribution of

the network activations due to the parameter updates slows the learn-

ing. This phenomenon is called internal covariate shift and can be

addressed by explicitly forcing the activations throughout the network

to take a unit gaussian distribution as the training progresses.

The batch normalization procedure y = BNγ,β(x) can be applied to

any activation and consists in the normalization step followed by the

scaling and shift step:

x̂i =
xi − µB√
σ2
B + ε

(5.7)

yi = BNγ,β(xi) = γx̂i + β (5.8)

where γ and β are the scale and shift parameter to be learned, µB
and σ2

B are respectively the mean and the variance estimated over the

samples of the current mini-batch B = {x1, x2, . . . }, and ε is a small

constant to avoid numerical problems.

The core observation is that this is possible because normalization

is a simple differentiable operation. It has been shown that in practice

networks that use Batch Normalization are significantly more robust

to bad initialization, moreover BatchNorm allows the use of higher

learning rates. Batch Normalization can be interpreted as doing pre-

processing at every layer of the network, but integrated into the back-

propagation procedure.
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In the implementation, applying this technique consists in inserting

a BatchNorm layer immediately after each convolutional/upsampling

layer and before the ReLU nonlinearities. We do not use Batch Nor-

malization for the recurrent layers since it does not seem to give any

improvement in the proposed implementation and its usefulness in the

recurrent setting is still object of study [124].

Feature concatenation

Motivated by the prior works on object and semantic segmentation

of Long et Al. [9], Bell et Al. [125] and Hariharan et Al. [126] we

combined features extracted by different layers in order to achieve more

discriminative features for semantic segmentation.

Decreasing the stride of the pool4 and pool5 layers from 2 to 1

plays the double role of reducing the overall downsampling factor of

the network, and allow us to concatenate the feature maps from pool3,

pool4 and pool5 layers. Indeed the feature maps from the pool layers

now have the same size and can be concatenated before being fed as

input to the recurrent layer(s). This specific kind of connections are

called skip-layer connections and can be used to route directly a lower

layer output to a higher layer input by-passing the intermediate layers.

It is important to notice that the scale of the feature values from

different pooling layers may vary substantially, making it hard to di-

rectly combine them for the prediction. Then we need to normalize the

feature maps before concatenation to avoid the final combination to be

dominated by the strongest feature map. This has been firstly noted

by Liu et Al. [127]. They found that L2 normalizing the features for

each layer and combining them using a scaling factor learned through

backpropagation works well. Since we adopt Batch-Normalization af-

ter each convolutional layer we decided to add a further BatchNorm

layer after each pooling layer in order to normalize the features before

combining them together.

ImageNet pretrained weights

In order to speed up the training we initialize the weights of each layer

of the network with a pre-trained model on the ImageNet dataset [88]

freely available for plug and play use. Specifically, we fixed the weights

of the convolutional layers of the first 2 groups (conv1 and conv2 )
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Figure 5.6: The final VGG-16 + ReSeg architecture

excluding them from the training procedure, and learning only the

weights of the remaining layers. This is possible because the VGG-

16 network extracts hierarchical feature representations that are more

complex in the deeper layers. The first layers are in charge to extract

very general features i.e, edges, so we can assume that they can be

transferred from a dataset to another without applying any fine-tuning

procedure. Excluding the first layers from the backward pass allows to

reduce the time required for the training without affecting too much

the performance of classification.

5.8 Experiments on Cityscapes Dataset

Cityscapes [4] is a large-scale dataset that contains a diverse set of

stereo video sequences recorded in street scenes from 50 different cities,

with high quality pixel-level annotations of 5 000 frames. The dataset

is an order of magnitude larger than similar previous attempts such

as CamVid [3] or Daimler [14], and it is specifically intended for sup-

porting research on algorithm that aims to exploit large volumes of

annotated data such as deep neural networks.

The images are provided at the high resolution of 2048 × 1024. In

order to test the model in a reasonable amount of time we downsampled



88 5.8. Experiments on Cityscapes Dataset

the images of a factor of 4 to a resolution of 512 × 256. We have to

note that decreasing the size of the images reduces the overall quality of

the segmentation. However the choice of using a downsampled version

of the images is in accord with our initial goal of showing that the

ReSeg model can be used in combination with VGG-16 increasing the

performance of the convolutional model, and not to stress on achieving

the best performance on the dataset. The Cityscapes dataset contains

19 classes, there are also a few pixels that are not annotated and are

non considered in the evaluation.

The dataset provides 5000 examples split into 2975 training, 500

validation and 1525 test images. The ground truth is not available for

the testing set; it is possible to assess the performance on the testing

set submitting the predicted segmentation to the Cityscapes evalua-

tion server. For this reason we evaluate our experiments only on the

validation set and then we submitted to the evaluation server only the

best results that we obtained on the validation set.

5.8.1 Design of the experiments and results

Thanks to Batch Normalization we are able to use higher learning

rates and pay less attention to the initialization of the parameters. For

this reason it has been possible to train the VGG-16+ ReSeg model

with Adam [25] optimization algorithm, learning rate 10−3 and mini-

batch size of 10 samples for all the experiments. For the evaluation we

considered only the mean Intersection over Union (IoU) index since it

is the reference metric of the benchmark suite proposed by the authors

of Cityscapes.

First, we tested the plain VGG-16 model that consists only of con-

volutional and max-pooling layers, as described in Section 5.7.2.

Since the VGG-16 model downsamples the input image of an overall

×8 factor, we added 3 Transposed Convolutional upsampling layers to

restore the original resolution by gradually doubling the size of the

feature maps. Then we stacked a last 1 × 1 convolutional layer in

order to reduce the dimensionality of the feature maps to match the

number of semantic categories before feeding it as input to the Softmax

classifier.

By adding a recurrent 1× 1 ReSeg layer after the VGG-16 network

and before the upsampling layers, we improved the overall performance

by 2.8% on the mean IoU with respect to the plain VGG-16 model,
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VGG-16 X 52.1 91.9 64.5 81.4 27.2 27.8 35.8 32.8 45.9 85.3 47.8 86.9 56.3 33.0 85.2 31.3 50.8 31.2 22.7 51.3

VGG-16 + 1 ReSeg layer X 54.9 92.7 64.8 82.9 36.8 33.8 38.1 31.5 44.8 86.3 49.0 89.8 56.3 30.0 86.7 45.2 59.4 40.6 23.8 49.9

VGG-16 + 1 ReSeg layer - 52.4 92.3 65.8 81.7 30.0 26.9 34.5 27.2 43.2 84.9 47.6 87.1 53.5 31.6 85.1 43.0 55.9 36.2 20.7 48.3

VGG-16 + 2 ReSeg layers X 55.1 92.3 66.2 82.8 26.9 35.4 36.3 31.8 44.6 85.3 45.7 87.6 56.0 34.8 86.4 56.6 61.6 42.2 25.8 49.2

Table 5.7: Comparison of the quantitative results of the VGG-16 + ReSeg model on

the validation set of the Cityscapes dataset [4]

showing that the convolutional model benefits from the introduction

of a recurrent layer that better models the long-term dependencies in

different local area of the images.

We also compared the use of concatenated features from different

max-pool layers with the use the output from the last max-pool layer

(pool5 ) showing that the model actually benefits from the use of a

combination of features with hierarchical complexity.

By adding a second recurrent 1×1 ReSeg layer we only improved the

performance by 0.2% on the mean IoU. This shows the importance of

finding the correct number of hidden layers, and the number of hidden

units of each layer of the network, requiring a further investigation and

an accurate analysis.

5.9 Results on Cityscapes dataset

We evaluated the best configuration on the testing set submitting our

segmentations to the evaluation server. Although this is a preliminary

work, our results are in line with the other state-of-the-art models

that use a downsampling factor of ×4. As discussed with the authors

of Cityscapes, downsampling the input images severely reduces the

quality of the segmentation especially of the smaller objects present in

the scene. We expect that using the input images at their original size

could improve the performance of the network at the expense of the

training and inference time.
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Method Mean IoU (%)

Dilation10 [128] 67.1

Adelaide [129] 67.1

FCN 8s [9] 65.3

downsampling ×2

DeepLab LargeFOV StrongWeak [130] 64.8

VGG-16 + ReSeg 64.5

DeepLab LargeFOV Strong [99] 63.1

CRFasRNN [105] 62.5

downsampling ×3

DPN [131] 59.1

downsampling ×4

Segnet basic [5] 57.0

VGG-16 + ReSeg 56.6

Segnet extended [5] 56.1

Table 5.8: Comparison of the quantitative results of the best VGG-16 + ReSeg model

on the test set of the Cityscapes dataset [4] with respect to the other state-of-the-art

methods.
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Figure 5.7: VGG-16 + ReSeg qualitative results on Cityscapes dataset [4]. The

top row is the input image, with the ground truth shown in the second row. The third

row shows the segmentation prediction.
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Figure 5.8: VGG-16 + ReSeg qualitative results on Cityscapes dataset [4]. The

top row is the input image, with the ground truth shown in the second row. The third

row shows the segmentation prediction.
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Conclusion and future

developments

In this work we focused on the ReSeg model proposed by Visin et

Al. [2] for object segmentation. We implemented the ReSeg architec-

ture using Lasagne [12], a lightweight library to build and train neural

networks in Theano [13]. Then, we performed a greedy procedure for

hyper-parameter optimization in order to have a first understanding

of the strengths and the weaknesses of the model, and we extensively

tested the network on challenging urban scene parsing datasets, achiev-

ing state-of-the-art performance on Camvid [3] and comparable to the

state-of-the-art performance on Cityscapes [4] with respect to convolu-

tional models.

We showed that recurrent neural networks are capable of capturing

global and local contexts in the images exploiting the spatial correlation

between pixels, and to learn a good feature representation that can

be used for semantic segmentation. Finding the best architecture for

semantic segmentation requires a more complete exploration of the

hyper-parameter space, but our work traces a first path in the study of

recurrent architectures for semantic image segmentation, showing that

they can be a valid alternative to fully convolutional models.

Then we also combined the ReSeg model with several convolutional

layers taken from the VGG-16 architecture [91] in order to exploit the

best from both models. We proved that the two kind of models can be

used together, and that the convolutional models can benefit from the

introduction of recurrent layers such as ReSeg to improve the accuracy

of the segmentation.
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In our work we did not stress on reaching the best possible perfor-

mance, but we rather focused on showing that the ReSeg model is a

valid alternative to the convolutional architectures, or can be used in

combination with them by exploiting the spatial correlation among the

pixels to extract a better feature representation for semantic segmen-

tation.

6.1 Future developments

6.1.1 Complete exploration of the hyper-parameter space

We presented a greedy procedure for the exploration of the hyper-

parameter space, however, this is likely to lead to sub-optimal solutions.

Many other combinations of hyper-parameter that probably achieve

better performance have not been explored because of the time and

computational resources that all the experiments would have required.

For this reason we believe that our work can be considered a good

starting point for further explorations of the hyper-parameter space

using methods such as bayesian optimization in order to improve the

results that we obtained. Moreover it is usually a good practice to

apply cross-validation to each hyper-parameter in order to find their

correct values and to achieve better generalization performance.

In all our experiments we tested the architecture fixing a random

seed in order to reproduce the results. A better training procedure

would involve the exploration of many different random seeds and to

provide the average and the variance of the performance for each ex-

periment configuration. This has not been done basically for compu-

tationally reasons.

Adadelta algorithm showed to be very effective thanks to its re-

markable properties, nevertheless the choice of the optimization algo-

rithm is crucial in order to reach a good minimum of the loss function.

We showed that the use of Batch Normalization layers allows us to use

other optimization methods such as Adam, and to pay less attention to

the optimization parameters. However the exploration of other meth-

ods and an accurate tuning of the learning rate could lead to better

solutions and performance.
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6.1.2 Improve class balancing

We saw that Semantic Segmentation is inherently an unbalanced classi-

fication problem due to the difference of size among the objects present

in the scene and also to the rarity of the instances of many classes. We

showed that this problem can be partially solved by reweighting the loss

function by proper weights that are estimated by taking into account

the frequencies of the classes in the training set. This naive proce-

dure showed good results, but the weights are not learned. A possible

improvement would be to embed the class balancing into the training

procedure and learn the weights that balance the class predictions.

A better approach could be to directly minimize the mean Intersec-

tion over Union index adding a penalization term in the loss function

that takes into account the false positive classifications.

6.1.3 Adding inter-frame correlation and depth information

We showed how it is possible to exploit the spatial correlation between

pixels to build a semantic segmentation system for urban scene parsing.

The final goal of this kind of system is to be actually used in a real

world environment, having a continuous stream of images coming from

a camera that feeds the network in real time. For this reason it makes

sense to exploit also the inter-frame correlation between subsequent

frames of the video stream. Integrating the information coming from

time correlation between frames can help to have a smooth and con-

sistent segmentation mask in the temporal axis. This can be done, for

instance, by conditioning the current output prediction of the network

on the previous frame prediction.

Moreover, fusing the camera stream with the depth information

coming from the LIDAR could surely improve the overall accuracy of

the system adding robustness to the prediction in unclear situations.

A complete architecture that fuses together spatial, time and depth

informations would improve the quality of the segmentation achieving

accurate results that could be used for a real-world implementation on

board of a self-driving car.



96 6.1. Future developments

6.1.4 Integrating Fully Connected CRFs for finer segmenta-

tion

We showed that the use of ReSeg layers improve the performance of

fully convolutional networks. However the segmentation masks that

the model produces for the smallest objects in the scene are still coarse

and blurry, due to the downsampled resolution of feature maps. To

refine the boundaries and obtain finer segmentations we could integrate

in the architecture a post-processing step that uses a fully-connected

CRF layer. In particular, a fully connected CRF is a graphical model

that connects all the pixels of the image, and that can be efficiently

trained with an efficient inference algorithm as proposed by Krahenbuhl

& Vladlen [78].

CRFs are usually adopted as post-processing step to improve the

quality of the segmentations produced by other systems. A recent ap-

proach by Zheng et Al [105] shows that one iteration of the mean-field

inference algorithm can be formulated as a stack of common CNN lay-

ers. Then the iterative mean-field inference can be seen as a Recurrent

Neural Network (RNN) and the parameters can be learnt using the

standard back-propagation-through-time algorithm [50]. In this set-

ting, CRFs can be used in combination with our VGG-16 + ReSeg ar-

chitecture and trained end-to-end using back-propagation. This allows

to jointly train the network and the CRF instead of using a separate

post processing procedure, hopefully achieving better performance.

6.1.5 Visualizing ReNet

It has been shown that Recurrent Neural Networks in the LSTM and

GRU variants are very good at learning long-term dependencies in

sequence learning tasks but it is not always easy to visualize what kind

of features they actually learn. A very deep and interesting analysis and

a comparison with other models has been done by Karpathy et Al [132]

attempting to give an explanation on what the neurons and the gates

are learning. Understanding what are the features that the network is

learning is important in order to design an effective architecture and

solve hard learning problems. The work of Karpathy et Al. relates to

another famous work by Zeiler and Fergus [32] in which the authors

show how to visualize the filters learned by a Convolutional Network

and how each layer of the network learns more complex features going
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deep in the network.

It is reasonable to think that a similar work can be done for the

ReNet layers applied to image recognition or semantic segmentation.

Showing the visual features that the recurrent layers are learning would

be crucial to understand the behavior of the architecture and could give

a real perception on the power and the expressiveness of the network.

A first attempt to understand and visualize the features extracted

by the ReNet layers has shown, as expected, that the first layer of the

network extracts low level feature maps such as edge detectors in order

to determine the contour of the objects, while the second layer extracts

more complex and higher level feature maps presumably related to the

particular semantic category of the objects.

Figure 6.1: In the first row, the input image and the ground truth of an image of the

Camvid dataset. The first and the second rows are respectively some examples of feature

maps extracted by the first and the second layer of the ReSeg basic configuration.
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Appendix A
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DeepVision Workshop

We include the paper that summarizes our results and we that submit-

ted to the CVPR 2016 DeepVision Workshop with the title “ReSeg: A

Recurrent Neural Network-based Model for Semantic Segmentation”.
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ReSeg: A Recurrent Neural Network-based Model
for Semantic Segmentation
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Paper ID 22

Abstract

We propose a structured prediction architecture, which
exploits the local generic features extracted by Convolu-
tional Neural Networks and the capacity of Recurrent Neu-
ral Networks (RNN) to retrieve distant dependencies. The
proposed architecture, called ReSeg, is based on the re-
cently introduced ReNet model for image classification. We
modify and extend it to perform the more challenging task
of semantic segmentation. Each ReNet layer is composed of
four RNN that sweep the image horizontally and vertically
in both directions, encoding patches or activations, and
providing relevant global information. Moreover, ReNet
layers are stacked on top of pre-trained convolutional lay-
ers, benefiting from generic local features. Upsampling
layers follow ReNet layers to recover the original image
resolution in the final predictions. The proposed ReSeg
architecture is efficient, flexible and suitable for a vari-
ety of semantic segmentation tasks. We evaluate ReSeg on
several widely-used semantic segmentation datasets: Weiz-
mann Horse, Oxford Flower, and CamVid; achieving state-
of-the-art performance. Results show that ReSeg can act as
a suitable architecture for semantic segmentation tasks, and
may have further applications in other structured prediction
problems.

1. Introduction

In recent years, Convolutional Neural Networks (CNN)
have become the de facto standard in many computer vi-
sion tasks, such as image classification and object detec-
tion [22, 14]. Top performing image classification archi-
tectures usually involve very deep CNN trained in a su-
pervised fashion on a large datasets [29, 40, 44] and have
been shown to produce generic hierarchical visual represen-
tations that perform well on a wide variety of vision tasks.
However, these deep CNNs heavily reduce the input resolu-
tion through successive applications of pooling or subsam-
pling layers. While these layers seem to contribute signifi-

cantly to the desirable invariance properties of deep CNNs,
they also make it challenging to use these pre-trained CNNs
for tasks such as semantic segmentation, where a per pixel
prediction is required.

Recent advances in semantic segmentation tend to con-
vert the standard deep CNN classifier into Fully Convolu-
tional Networks (FCN) [31, 34, 2, 37] to obtain coarse im-
age representations, which are subsequently upsampled to
recover the lost resolution. However, these methods are
not designed to take into account and preserve both local
and global contextual dependencies, which has shown to
be useful for semantic segmentation tasks [41, 16]. These
models often employ Conditional Random Fields (CRFs)
as a post-processing step to locally smooth the model pre-
dictions, however the long-range contextual dependencies
remain relatively unexploited.

Recurrent Neural Networks (RNN) have been introduced
in the literature to retrieve global spatial dependencies and
further improve semantic segmentation [35, 16, 9, 8]. How-
ever, training spatially recurrent neural networks tends to be
computationally intensive.

In this paper, we aim at the efficient application of Re-
current Neural Networks RNN to retrieve contextual infor-
mation from images. We propose to extend the ReNet ar-
chitecture [46], originally designed for image classification,
to deal with the more ambitious task of semantic segmen-
tation. ReNet layers can efficiently capture contextual de-
pendencies from images by first sweeping the image hori-
zontally, and then sweeping the output of hidden states ver-
tically. The output of a ReNet layer is therefore implicitly
encoding the local features at each pixel position with re-
spect to the whole input image, providing relevant global
information. Moreover, in order to fully exploit local and
global pixel dependencies, we stack the ReNet layers on top
of the output of a FCN, i.e. the intermediate convolutional
output of VGG-16 [40], to benefit from generic local fea-
tures. We validate our method on Weizmann Horse and Ox-
ford Flower foreground/background segmentation datasets
as a proof of concept for the proposed architecture. Then,
we evaluate the performance in the standard benchmark of
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urban scenes CamVid; achieving state-of-the-art in all three
datasets.

2. Related Work

Methods based on FCN tackle the information recovery
(upsampling) problem in a large variety of ways. For in-
stance, Eigen et al. [13] introduce a multi-scale architecture,
which extracts coarse predictions, which are then refined us-
ing finer scales. Farabet et al. [15] introduce a multi-scale
CNN architecture; Hariharan et al. [18] combine the infor-
mation distributed over all layers to make accurate predic-
tions. Other methods such as [31, 2] use simple bilinear
interpolation to upsample the feature maps of increasingly
abstract layers. More sophisticated upsampling methods,
such as unpooling [2, 34] or deconvolution [31], are intro-
duced in the literature. Finally, [37] concatenate the feature
maps of the downsampling layers with the feature maps of
the upsampling layers to help recover finer information.

RNN and RNN-like models have become increasingly
popular in the semantic segmentation literature to capture
long distance pixel dependencies [35, 16, 8, 42]. For in-
stance, in [35, 16], CNN are unrolled through different time
steps to include semantic feedback connections. In [8],
2-dimensional Long Short Term Memory (LSTM), which
consist of 4 LSTM blocks scanning all directions of an im-
age (left-bottom, left-top, right-top, right-bottom), are in-
troduced to learn long range spatial dependencies. Follow-
ing a similar direction, in [42], multi-dimensional LSTM
are swept along different image directions; however, in this
case, computations are re-arranged in a pyramidal fashion
for efficiency reasons. Finally, in [46], ReNet is proposed
to model pixel dependencies in the context of image classi-
fication. It is worth noting that one important consequence
of the adoption of the ReNet spatial sequences is that they
are even more easily parallelizable, as each RNN is depen-
dent only along a horizontal or vertical sequence of pixels;
i.e., all rows/columns of pixels can be processed at the same
time.

3. Model Description

The proposed ReSeg model builds on top of ReNet [46]
and extends it to address the task of semantic segmentation.
The model pipeline involves multiple stages.

First, the input image is processed with the first layers of
VGG-16 [40] network, pre-trained on ImageNet [11], where
the number of VGG layers used to process the image varies
from dataset to dataset, and is set such that the image res-
olution does not become too small. The resulting feature
maps are then fed into one or more ReNet layers that sweep
over the image. Finally, one or more upsampling layers are
employed to resize the last feature maps to the same reso-
lution as the input and a softmax non-linearity is applied to

Figure 1. A ReNet layer

predict the probability distribution over the classes for each
pixel.

The recurrent layer is the core of our architecture
and is composed by multiple RNN that can be imple-
mented as a vanilla tanh RNN layer, a Gated Recurrent
Unit (GRU) layer [10] or a LSTM layer [19]. Previous work
has shown that the ReNet model can perform well with lit-
tle concern for the specific recurrent unit used, therefore, we
have chosen to use GRU units as they strike a good balance
between memory usage and computational power.

In the following section we will define the recurrent and
the upsampling layers in more detail.

3.1. Recurrent layer

As depicted in Figure 1, each recurrent layer is com-
posed by 4 RNNs coupled together in such a way to capture
the local and global spacial structure of the input data.

Specifically, we take as an input an image (or the feature
map of the previous layer) X of elements x ∈ RH×W×C ,
where H , W and C are respectively the height, width and
number of channels (or features) and we split it into I × J
patches pi,j ∈ RHp×Wp×C . We then sweep vertically a
first time with two RNNs f↓ and f↑, with U recurrent units
each, that move top-down and bottom-up respectively. Note
that the processing of each column is independent and can
be done in parallel.

At every time step each RNN reads the next non-
overlapping patch pi,j and, based on its previous state, emits
a projection o?i,j and updates its state z?i,j :

o↓i,j = f↓(z↓i−1,j , pi,j), for i = 1, · · · , I (1)

o↑i,j = f↑(z↑i+1,j , pi,j), for i = I, · · · , 1 (2)

We stress that the decision to read non-overlapping patches
is a modeling choice to increase the image scan speed and
lower the memory usage, but is not a limitation of the archi-
tecture.

Once the first two vertical RNNs have processed the
whole input X , we concatenate their projections o↓i,j and
o↑i,j to obtain a composite feature map Ol whose elements

o
l
i,j ∈ R2U can be seen as the activation of a feature detec-

tor at the location (i, j) with respect to all the patches in the

2
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Figure 2. The ReSeg network. For space reasons we do not represent the pretrained VGG-16 convolutional layers that we use to preprocess
the input to ReSeg.

j-th column of the input. We denote what we described so
far as the vertical recurrent sublayer.

After obtaining the concatenated feature map Ol, we
sweep over each of its rows with a pair of new RNNs, f→

and f←. We chose not to split Ol into patches so that
the second recurrent sublayer has the same granularity as
the first one, but this is not a constraint of the model and
different architectures can be explored. With a similar but
specular procedure as the one described before, we proceed
reading one element oli,j at each step, to obtain a concate-

nated feature map O↔ =
{
h↔i,j
}j=1...J

i=1...I
, once again with

o↔i,j ∈ R2U . Each element o↔i,j of this horizontal recurrent
sublayer represents the features of one of the input image
patches pi,j with contextual information from the whole im-
age.

It is trivial to note that it is possible to concatenate many
recurrent layers O(1···L) one after the other and train them
with any optimization algorithm that performs gradient de-
scent, as the composite model is a smooth, continuous func-
tion.

3.2. Upsampling layer

Since by design each recurrent layer processes non-
overlapping patches, the size of the last composite feature
map will be smaller than the size of the initial input X,
whenever the patch size is greater than one. To be able to
compute a segmentation mask at the same resolution as the
ground truth, the prediction should be expanded back before
applying the softmax non-linearity.

Several different methods can be used to this end, e.g.,
fully connected layers, full convolutions and transposed
convolutions. The first is not a good candidate in this do-
main as it does not take into account the topology of the
input, which is essential for this task; the second is not opti-
mal either, as it would require large kernels and stride sizes
to upsample by the required factor. Transposed convolu-
tions are both memory and computation efficient, and are
the ideal method to tackle this problem.

Transposed convolutions – also known as fractionally
strided convolutions – have been employed in many works
in recent literature [49, 51, 32, 36, 20]. This method is based
on the observation that direct convolutions can be expressed

as a dot product between the flattened input and a sparse
matrix, whose non-zero elements are elements of the con-
volutional kernel. The equivalence with the convolution is
granted by the connectivity pattern defined by the matrix.

Transposed convolutions apply the transpose of this
transformation matrix to the input, resulting in an opera-
tion whose input and output shapes are inverted with re-
spect to the original direct convolution. A very efficient
implementation of this operation can be obtained exploiting
the gradient operation of the convolution – whose optimized
implementation can be found in many of the most popular
libraries for neural networks. For an in-depth and compre-
hensive analysis of each alternative, we refer the interested
reader to [12].

4. Experiments
4.1. Datasets

We evaluated the proposed ReSeg architecture on sev-
eral benchmark datasets. We proceeded by first assessing
the performances of the model on the Weizmann Horse and
the Oxford Flowers datasets and then focused on the more
challenging Camvid dataset. We will describe each dataset
in detail in this section.

4.1.1 Weizmann Horse

The Weizmann Horse dataset, introduced in [6], is an image
segmentation dataset consisting of 329 variable size images
in both RGB and gray scale format, matched with an equal
number of groundtruth segmentation images, of the same
size as the corresponding image. The groundtruth segmen-
tations contain a foreground/background mask of the fo-
cused horse, encoded as a real-value between 0 and 255. To
convert this into a boolean mask, we threshold in the center
of the range setting all smaller values to 0, and all greater
values to 1.

4.1.2 Oxford Flowers 17

The Oxford Flowers 17 class dataset from [33] contains
1363 variable size RGB images, with 848 image segmen-
tations maps associated with a subset of the RGB images.

3
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There are 8 unique segmentation classes defined over all
maps, including flower, sky, and grass. To build a fore-
ground/background mask, we take the original segmenta-
tion maps, and set any pixel not belonging to class 38
(flower class) to 0, and setting the flower class pixels to 1.
This binary segmentation task for Oxford Flowers 17 is fur-
ther described in [47].

4.1.3 CamVid Dataset

The Cambridge-driving Labeled Video Database
(CamVid) [7] is a real-world dataset which consists
of images recorded from a car with an internally mounted
camera, capturing frames of 960 × 720 RGB pixels per
frame, with a recording frame rate of 30 frames per second.
A total of ten minutes of video was recorded, and approxi-
mately one frame per second has been manually annotated
with per pixel class labels, from one of 32 possible classes.
A small number of pixels were labelled as void in the
original dataset. These do not belong to any of the 32
classes prescribed in the original data, and are ignored
during evaluation. We used the same subset of 11 class
categories as [2] for experimental analysis. The CamVid
dataset itself is split into 367 training, 101 validation and
233 test images, and in order to make our experimental
setup fully comparable to [2], we downsampled all the
images by a factor of 2 resulting in a final 480 × 360
resolution.

4.2. Experimental settings

To gain confidence with the sensitivity of the model to
the different hyperparameters, we decided to evaluate it first
on the Weissman Horse and Oxford Flowers datasets on a
binary segmentation task; we then focused the most of our
efforts on the more challenging semantic segmentation task
on the CamVid dataset.

The number of hyperparameters of this model is poten-
tially very high, as for each ReNet layer different implemen-
tations are possible (namely vanilla RNN, GRU or LSTM),
each one with its specific parameters. Furthermore, the
number of features, the size of the patches and the initializa-
tion scheme have to be defined for each ReNet layer as well
as for each transposed convolutional layer. To make it fea-
sible to explore the hyperparameter space, some of the hy-
perparameters have been fixed by design and the remaining
have been finetuned. In the rest of this section, the architec-
tural choices for both sets of parameters will be detailed.

All the transposed convolution upsampling layers were
followed by a ReLU [23] non-linearity and initialized
with the fan-in plus fan-out initialization scheme described
in [17]. The recurrent weight matrices were instead ini-
tialized to be orthonormal, following the procedure defined
in [39]. We also constrained the stride of the upsampling

transposed convolutional layers to be tied to their filter size.
In the segmentation task, each training image carries

classification information for all of its pixels. Differently
from the image classification task, small batch sizes pro-
vide the model with a good amount of information with
sufficient variance to learn and generalize well. We experi-
mented with various batch sizes going as low as processing
a single image at the time, obtaining comparable results in
terms of performance. In our experiments we kept a fixed
batch size of 5, as a compromise between train speed and
memory usage. In all our experiments, we used L2 regu-
larization [24], also known as weight decay, set to 0.001 to
avoid instability at the end of training. We trained all our
models with the Adadelta [50] optimization algorithm, for
its desired property of not requiring a specific hyperparam-
eter tuning. The effect of Batch Normalization in RNNs has
been a focus of attention [27], but it does not seem to pro-
vide a reliable improvement in performance, so we decided
not to adopt it.

In the experiments, we varied the number of ReNet lay-
ers and the number of upsampling transposed convolutional
layers, each of them defined respectively by the number of
features dRE(l) and dUP(l), the size of the input patches (or
equivalently of the filters) psRE(l) and fsUP(l).

4.3. Results

In Table 1, we report the results on the Weizmann Horse
dataset. On this dataset, we verified the assumption that pro-
cessing the input image with some pre-trained convolutional
layers from VGG-16 could ease the learning. Specifically,
we restricted ourselves to only using up to 4 convolutional
layers from VGG, as we only intended to extract some low-
level generic features and learn the task-specific high-level
features with the ReNet layers. The results indeed show an
increase in terms of average Intersection over Union (IoU)
when these layers are being used, confirming our hypothe-
sis.

Table 2 shows the results for Oxford Flowers dataset,
when using the full ReSeg architecture (i.e., including VGG
convolutional layers). As shown in the table, our method
clearly outperforms the state-of-the-art both in terms of
global accuracy and average Intersection over Union (IoU).

Table 3 presents the results on CamVid dataset using the
full ReSeg architecture. Our model exhibits state-of-the-
art performance in terms of IoU when compared to both
standard segmentation methods and neural network based
methods, showing an increase of 4.6% w.r.t. to the recent
SegNet model. It is worth highlighting that incorporating
sub-model averaging to SegNet model, as in [21], boosts the
original model performance, as expected. Therefore, intro-
ducing sub-model averaging to ReSeg would also presum-
ably result in significant performance increase. However,
this remains to be tested.

4
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Method Acc. Avg IoU
All background baseline 74.7 0.0
All foreground baseline 25.4 79.9

ReSeg (no VGG) 94.9 79.9
Kernelized structural SVM [5] 94.6 80.1

ReSeg 93.3 83.0
CRF learning [30] 95.7 84.0

PatchCut [48] 95.8 84.0

Table 1. Weizmann Horses

Method Acc. Avg IoU
All background baseline 71.0 0.0
All foreground baseline 29.0 29.2

GrabCut [38] 95.9 89.3
Tri-map [47] 96.7 91.7

ReSeg 98.0 93.7
Table 2. Oxford Flowers
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Segmentation models
Super Parsing [45] 87.0 67.1 96.9 62.7 30.1 95.9 14.7 17.9 1.7 70.0 19.4 51.2 83.3 n/a

Boosting+Higher order [43] 84.5 72.6 97.5 72.7 34.1 95.3 34.2 45.7 8.1 77.6 28.5 59.2 83.8 n/a
Boosting+Detectors+CRF [26] 81.5 76.6 96.2 78.7 40.2 93.9 43.0 47.6 14.3 81.5 33.9 62.5 83.8 n/a

Neural Network based segmentation models
SegNet-Basic (layer-wise training [1]) 75.0 84.6 91.2 82.7 36.9 93.3 55.0 37.5 44.8 74.1 16.0 62.9 84.3 n/a

SegNet-Basic [2] 80.6 72.0 93.0 78.5 21.0 94.0 62.5 31.4 36.6 74.0 42.5 62.3 82.8 46.3
SegNet [2] 88.0 87.3 92.3 80.0 29.5 97.6 57.2 49.4 27.8 84.8 30.7 65.9 88.6 50.2

ReSeg + Class Balance 84.5 83.0 93.4 86.6 53.9 96.0 83.1 23.3 55.4 82.7 57.4 72.7 87.4 54.8
Sub-model averaging

Bayesian SegNet-Basic [21] 75.1 68.8 91.4 77.7 52.0 92.5 71.5 44.9 52.9 79.1 69.6 70.5 81.6 55.8
Bayesian SegNet [21] 80.4 85.5 90.1 86.4 67.9 93.8 73.8 64.5 50.8 91.7 54.6 76.3 86.9 63.1

Table 3. CamVid. The table reports the per-class accuracy, the average per-class accuracy, the global accuracy and the average intersection
over union. The best values and the values within 1 point from the best are highlighted in bold for each column.
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ReSeg + LCN (2× 2), (1× 1) (100, 100) (2× 2) (100, 100) 81.5 80.3 94.7 78.1 42.8 97.4 53.5 34.3 36.8 68.9 47.9 65.1 84.8 52.6
ReSeg (2× 2), (1× 1) (100, 100) (2× 2) (100, 100) 83.9 81.2 95.6 81.8 41.9 98.3 65.9 13.6 43.9 64.5 49.5 65.5 85.6 54.0

ReSeg + Class Balancing (2× 2), (1× 1) (100, 100) (2× 2) (100, 100) 84.5 83.0 93.4 86.6 53.9 96.0 83.1 23.3 55.4 82.7 57.4 72.7 87.4 54.8

Table 4. Comparison of the performance of different hyperparameter on CamVid.

5. Discussion

As reported in the previous section, our experiments on
the Weizmann Horse dataset show that processing the in-
put images with some layers of VGG-16 pre-trained net-
work improves the results. In this setting, pre-processing
the input with Local Contrast Normalization (LCN) does
not seem to give any advantage (see Table 4). We did not
use any other kind of pre-processing.

While on both the Weizmann Horse and the Ox-
ford Flowers datasets we trained on a binary back-
ground/foreground segmentation task, on CamVid we ad-
dressed the full semantic segmentation task. In this set-
ting, when the dataset is highly imbalanced, the segmen-
tation performance of some classes can drop significantly
as the network tries to maximize the score on the high-
occurrence classes, de facto ignoring the low-occurrence
ones. To overcome this behaviour, we added a term to

the cross-entropy loss to bias the prediction towards the
low-occurrence classes. We use median frequency balanc-
ing [13], which re-weights the class predictions by the ra-
tio between the median of the frequencies of the classes
(computed on the training set) and the frequency of each
class. This increases the score of the low frequency classes
(see Table 4) at the price of a more noisy segmentation
mask, as the probability of the underrepresented classes is
overestimated and can lead to an increase in misclassified
pixels in the output segmentation mask, as shown in Fig-
ure 3 and Figure 4.

6. Conclusion

We introduced the ReSeg model, an extension of the
ReNet model for image semantic segmentation. The pro-
posed architecture shows state-of-the-art performances on
CamVid, a widely used dataset for urban scene semantic

5



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

CVPR
#22

CVPR
#22

CVPR 2016 Submission #22. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 3. Camvid segmentation example without class balancing. From the left: input image, ground truth segmentation and ReSeg
segmentation.

Figure 4. Camvid segmentation example with class balancing. From the left: input image, ground truth segmentation and ReSeg segmen-
tation.

segmentation, as well as on the much smaller Oxford Flow-
ers dataset. We also report near state-of-the-art performance
on the Weizmann Horses.

In our analysis, we discuss the effects of applying some
layers of VGG-16 to process the input data, as well as those
of introducing a class balancing term in the cross-entropy
loss function to help the learning of under-represented
classes. Notably, it is sufficient to process the input im-
ages with just a few layers of VGG-16 for the ReSeg model
to gracefully handle the semantic segmentation task, con-
firming its ability to encode contextual information and long
term dependencies.
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