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Machine Learning CMiLANG 863

“Learning from experience how to perform a given task

that has to be automatized by a machine.”



Supervised Learning

X Input set

P (unknown) probability on X x Y

Y Output set Classfficaton Y = {1, ...

Regression

¢:Y: Y~ R Lossfunction

f:X—=)Y

(candidate) input-output predictor

Goal: minimise Expected Risk

R(f:p) = E, £(f(2),y)

YCR
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POLITECNICO

Supervised Learning

In practice, p is unknown and it can be only accessed via finite samples D = {(x4, yi) }_;

Learning Algorithm

A:Dw— f

Hyper-parameters Hypothesis/Inductive Bias

Linear functions \
Radial basis functions
Neural Networks ...

Leamning rate
Dropout,
# iterations ...

e

A D) = sggmin (S, D) + (/)

n

Empirical Risk R(f, D) = %Ze(f (x:).y:) + Regulariser term e.g. Q(f) = A||f|?
i=1 4




Modern Machine Learning success

AlexNet
D: ImageNet (1.2M images)

Input set: 224 x 224 images
Output: 1000 classes

argmm — ZE (zi;w),vi) + AQ2(w)

. differentiable, non-linear function
f i w)

parameterized by . 8 layers Neural Network.
60M parameters.

¢ (f (:L'i; w) y yz) cross-entropy loss

Q) by (f) L2 regularization, early stopping, dropout

Softmax Output J
- =
Layer 7: Full
= =
Layer 6: Full
ZAS
Layer 5: Conv + Pool
ZS
Layer 4: Conv
<&
Layer 3: Conv
-
Layer 2: Conv + Pool
) S
Layer 1: Conv + Pool
L o~ )

-

~

Input Image

Krizhesky et al. (2012)
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https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

Example: image classification

nputset X C Rhxwxe

Outputset Y =A{1,..., K}

class of candidate predictors f@

Leamed

— Fixed . Z
eature >
r— () == ox) —

- High dimensional Rd - Compact representation
. z € . . .
- raw input - designed to have nice properties

POLITECNICO
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Example: image classification

nputset X C Rhxwxe

Outputset Y =A{1,..., K}

class of candidate predictors fe ] gq5

Leamed

— Fixed Z

A

x — (95(0)) = (folz) — 3

z ¢ R?



Example: image classification

nputset X C Rhxwxe

Outputset Y =A{1,..., K}

Head (actually solving the task)

class of candidate predictors fe ] gq5

Leamed
- Fixed

A

T — (95(@) 2= (fo(2) —

Representations learmning via Neural Networks
uses back-propagation and gradient descent

POLITECNICO
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Motivations P ANG foés
1) Theoretical understanding of modern neural architectures
Adaptive and lterative Inference: ResNets as dynamical systems
2) Representations Learning for new data modalities
—) Computer Vision with Asynchronous Event-based data
3)Learning from Limited Labels

Adaptive Representations for One-Shot Video Object Segmentation



POLITECNICO
MILANO 1863

Adaptive and lterative Inference

ResNets as dynamical systems

10



Residual and Highway Networks POLARG 865
X

“Shortcut or

Redesign neural networks to make . .
Skip connection

them easier to optimize .
° f(x;0)

even for very large depths The gradient can skip layers

(solving the vanishing of computation to assign
gradient problem) credit to initial units.
y=x+ f(z;0)
y=x-C(z;0c)+ f(z;0) - T(z;0r)
He et al. (2015) Carry gate Transform gate
eetal

Srivastava et al. (2019) 1


https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1507.06228

POLITECNICO

Residual and Highway Networks

Plain Networks Residual Networks

ResNet-20

ResNet-32
===ResNet-44
=—=ResNet-56
=ResNet-110

error (%)

3 plain-20 LV T T T T T S e s s s NIRRT
plain-32 RN
—plain-44 el N
— plain-56 ’ ‘ ’ ’ | RSN N
00 1 2 3 4 5 6
iter. (1e4) iter. (1e4)

He et al. (2015)
12


https://arxiv.org/abs/1512.03385

Additive Compositional Layers CMiLANG 863

Most of the successfully trained very deep architectures share a core building block
to compute a vector representation at layer k + 1, parametrised by 8(k):

r(k+1) = (k) + f(z(k), 0(k))

Previous Representation Additive Non-Linear Transformation

Inductive bias: [terative inference and features refinement

13



lterative inference in ResNets and Highway Networks

Mean Cross Entropy Error

Greff et al.

Lower residual blocks learmn

(each block discovers
a different representation)

Lesioned Highway Layer
30

1 10 20 40 50
T T T T

T
CIFAR-100

non-lesioned performance

(2017)

Jastrzebski et al. (2018)

©'0.91
3 0.8;
(@]

< 0.71

Accuracy
o o
o ©

=
o

POLITECNICO
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Higher residual blocks learn to perform iterative
inference and feature refinement.

(keep the semantics of the representation
of the previous layer)

Original Resnet on CIFAR-100

ccuracy (no layer dropped)
cy (no layer dropped)
cy

0 10 20 30 40 50
Residual block index

Avg-Pooling Resnet on CIFAR-100

racy (no layer dropped)
(no layer dropped)

—— train accuracy

O 5 10 15 20 25 30
Residual block index

1 OSingle Representation Resnet on CIFAR-100

0.8
g 0.6
o 0.4
<0.2

accuracy (no layer dropped)
y (no layer dropped)
curacy

—— train accuracy

0 2 4 6 8
Residual block index

wResnet on CIFAR-100

curacy (no layer dropped)
y (no layer dropped)

— train accuracy

! 0 2 4 6 8 10

Residual block index

14


https://arxiv.org/abs/1612.07771
https://arxiv.org/abs/1710.04773

ResNets as ODEs discretizations NNaISense POLITECRICO

Continuous nonlinear ODE Forward Euler discretization

P=f@(t);0) = a(k+1)=a(k) +h f(2(k);0)

g

ResNets = forward Euler discretization of & = f(xz(t); ©)with step size h = 1

Assuming shared weights

k)=0 Y1<k<K Jim === F(@(k): 0)

Weinan (2017)
Haber & Ruthotto. (2017) 15



https://link.springer.com/article/10.1007/s40304-017-0103-z
https://arxiv.org/abs/1705.03341

Deep Networks as ODEs discretizations TSNS oo

Analysis view

Study properties of existing architectures (e.g., ResNet, PolyNet, FractalNet and RevNet) by
interpreting them as different numerical discretizations of ODEs, (e.g. Backward Euler (implicit)
method or Runge-Kutta method)

Synthesis view

Design new architectures from different ODEs and discretizations.

Lu et al (2018)

16


http://proceedings.mlr.press/v80/lu18d.html

Control Theory for Representation Learning MM/sense POLTECNICO

ResNets can be considered discretized dynamical systems that perform iterative inference.

The system (network) should have a stable behaviour such that
the forward propagation of the state

If we unroll the system to infinity,
it should converge to an attractor.

Use Control Theory to study ResNets in terms of
stability of their underlined dynamical system.

17



(Autonomous) Stable ResNet MNESEnse PoLES s ©

K_ A\K_)=—2

Zo
1.5 ‘
P . ALVl
z(k+1) = (k) + f(x(k); ©) i
f ( T @) ) ‘ ARRRRARAR DR RN R R0 OV R Y
0 Assuming shared weights NSNSV L L
(ime varant systen R H 42
NSNS VL LY ]
0k)=0 V1<k<K \\\\\\\\\\\\\§LW¢zz./z///z
- - OSSOSO Y N WY VY )
71 e sefrreeeeeeeee:
VAAAAAAAA 2 P : ': : BRNOSNONONORORORORORONONON
VVAAASAZZ 7T A A R KN
f(z1;0) ResNet are autonomous systems. V2277711 RRRRARRNRRNRNAR AR
’ VA7 T T AUV TTERRERREERNNNNNY
| - ZNNN N
Input is connected only to the first 77T AR AR AR AR R AR
. Ly . T UUVRTTETTTERRRRRERRRNNNRRNNNY
layer, acting as initial condition x. —1.5 IR ARRAEAREAEERAAAIANA
Tk
F(zx:0) Enforcing stability in autonomous systems:
output / information — 0 for all inputs (or trivial solution)
This is useless for Machine Leamning applications!

18
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NAIS-Net: Non Autonomous 10-Stable ResNet mmeisense P

Zo

U
0 0) — Use input skip connections to
; define Non-Autonomous Systems.
Ty
f(a1:0) v(k+1) = x(k) + f(z(k), u; ©)
Assuming shared weights
0k)=0 Y1<k<K
Tk
Output trajectories are conditioned on the
f(z1;0)

input and converge to input-dependent
attractors.

OLITECNICO
MILANO 1863
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NAIS-Net block stability NNSISENSS H o
NAIS-Net Fully-Connected block
z(k+1) = z(k) + ho(Ax(k) + Bu + b)  input transfer matrix

Linearization: state-transfer Jacobian for layer k

Residual Jacobian

Stability Condition (from Lyapunov indirect method) where J exists
(the nonlinearity

pi= sup P(J(37au)) <1 o is not saturated)

(z,u)€P ~ spectral radius

20



N

I il — POLITECNICO
Algorithms for Input-Output stability NNSISSNSE P s e
Algorithm 1 Fully Connected Reprojection
Input: R € R™*™, s <n,6 =1—2¢ €€ Algorithm 2 CNN Reprojection
(0,0.5). Input: § € RNC C € R"xXnxXNexNec apq
if |[R" R||r > & then 0<e<n<L
for each feature map c do
r R -
R+ /- /IRTR| ¢ 6c<—ma.x(min(6c,1—n),—1+n)
else 5 -
EFR Cici:enm:{__l_éc
endif if .. |C$|>1—e—|d|then
Output: R J# centre J I
6 . m ce
S & (1 ‘ lécl) Zjsticente |C5 |
end if
end for
Proposed reprojection algorithms can be used with Output: 4, C

any gradient-based optimization method to
constrain the parameters in the stability region.
21



Non-Autonomous Input-Output Stable Architecture MM=iSENSE POLITECHICO

MILANO 1863

NN PN NN

xi()  xi2)  x0) Xi(K) X)) X22)  X(3) X2(K2) D) X)) XN(Kw)
A A A A
i A4 A 2 A A A N N Ax >
[0}
B B2 Bs Bn q(%
B see B B e LN ] B B see 8
I | I B1 I B1 I | I | I 32 I | I | I ; 6
Bn-1
ui ui ui ui un ur us us us UN UN UN UN
| 1 | | |
NAIS-Net block NAIS-Net block NAIS-Net block
with f(xy, ;5 ©4) with f(xy, up; ©,) with f (xy, ty; O )

NAIS-Net is a cascade of stable time-invariant non-autonomous dynamical systems.

The skip connections from the input u; to all layers in block i make the process non-autonomous.
22



: = POLITECNICO
Pattel’ﬂ-depeﬂdeﬂt prOCeSSIﬂg depth MNEISEnse MILANO 1863

g EFach NAIS-Net block represents an iterative process that models
£ ©) the trajectories of the input in a different latent space

Zo;

x(k+1) = (k) + f(z(k),u; 0)
Assuming shared weights

- 0k)=0 V1<k<K

f(z1;0)
Thanks to stability and shared weights ®; NAIS-Net blocks can
e unrolled until convergence to input-dependent attractors.

T We can then define stopping criteria to have a variable
i ©) number of processing stages K; conditioned on the input.

Tk;

|lx(k+1) —x(k)||2 <€



Generalization gap on CIFAR-10 MNEISEnse POLITECNISO

NAIS-Net input-output stability advantages:

—— NAIS-Net
—— ResNet

trajectories are bounded with respect to
noise perturbations increasing robustness
and invariance to input perturbations.

NAIS-Net is less prone to overfitting than
a classic ResNet, reducing the
generalization gap

Average Loss

R , because the
0.0 - forward pass is already well behaved.(we
0 200 400 600 800 1000 need it only when the input dimensionality
changes)

Training lterations x10?

24



Pattern-dependent processing depth MNEISEnse POLTECNISO

Final number of layers (depth)

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273

NAIS-Net adapts processing depth systematically according to the characteristics of the data.

The depth of the network can be considered as an additional degree of freedom of the model.
25



N

Pattern-dependent processing depth MNEISense P%'&E&ELSO

Final number of layers (depth)

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271

i IH
ﬁiiﬂhm ii’a

NAIS-Net adapts processing depth systematically according to the characteristics of the data.

The depth of the network can be considered as an additional degree of freedom of the model.
26
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Representations Learning
for new data modalities

Computer Vision with Asynchronous Event-based data

27



Event-based Cameras

Event-Based Camera vs Standard Camera

Hanme Kim

Robot Vision Group
Imperial College London

Pixel Location

e=(z,y,t,p) ©

Polarity: {-1, +1}

POLITECNICO
MILANO 1863

Bio-inspired vision sensors that emulate
the functioning of biological retinas.

Smart pixels &
@ Al independent from each other

Only transmit information due to
brightness changes in the scene

over conventional cameras:

High dynamic range
Reduced information redundancy

No motion blur

Microseconds temporal resolution
28



Q Motivation

New data, new challenges
Sparse data — Efficient computation

Asynchronous data = Time integration

e=(z,y,t,p)

Existing representations do not scale to
complex computer vision tasks because:

X hand-crafted or based on heuristics,

x and/or disregard spatial correlation.

X and/or disregard order of arrival

29



Q Motivation

New data, new challenges
Sparse data — Efficient computation

Asynchronous data = Time integration

e=(z,y,t,p)

Existing representations do not scale to

complex computer vision tasks because:

X hand-crafted or based on heuristics.

x and/or disregard spatial correlation.

X and/or disregard order of arrival

POLITECNICO
MILANO 1863

Goal: Learn representations from raw events.
Combine the advantages of event cameras

and those of frame-based architectures.

Desiderata

@" handle sparse data and retain the
advantages of asynchronous computation.

@ preserve spatial information.

@" end-to-end training with state-of-the-art
computer vision systems.

30



Representations for event-based data O LANG 1858

Event-based Camera
Handcrafted event encoding 31

Standard RGB Camera



Event Representations - Simple Surfaces ot

- Negative events
+ Positive events

L & Timestamp
of the last event
in each pixel
(normalized)

2 channels

32



Event Representations - Simple Surfaces

4 channels

POLITECNICO
MILANO 1863

- Negative events
+ Positive events

& Timestamp

of the last event
in each pixel

# of events
received In each pixel

33



Event Representations - Simple Surfaces ot

Split in temporal windows (bins) to retain temporal information.
e.g. 4 channels per bin. L 34




Eveﬂt RepreseﬂtathﬂS - HATS MILANO 1863

—p H‘"T’-‘“‘_ﬂ-

qg
@
-

Sironi et al. (2018)
Lagorce et al. (2016)

35


https://arxiv.org/abs/1803.07913
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7508476

POLITECNICO

Eveﬂt RepreseﬂtathﬂS - HATS MILANO 1863

Q Retain temporal information

Q Event features leverage local
spatial-temporal patterns

Cannot be trained end-to-end
and optimized for the task

The exponential kernel is hanad-
crafted

x The aggregation step is fixed

Sironi et al. (2018)

Lagorce et al. (2016)
36



https://arxiv.org/abs/1803.07913
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7508476

Event Representations - PhasedL.STM S ic e

I

Flattened
, . | representation

37



Event Representations - PhasedL.STM S ic e

Q Can be trained end-to-end and
optimized for the task
I & The aggregation step is leamed

x Spatial information is lost

Does not scale to large frames and

Flattened complex scenes
representation

Neil et al. (2016

38


https://arxiv.org/pdf/1610.09513.pdf

POLITECNICO

Eveﬂt RepreSeﬂtathﬂS - EST MILANO 1863

: i -
. Pige I' 8
4 ® Aggregation S hl
o (sum) F--'-
: T,
Shared MLP /

EST representation

Daniel et al. (2019)

39


https://arxiv.org/abs/1904.08245

POLITECNICO

Eveﬂt RepreseﬂtathﬂS - EST MILANO 1863

T . % & Generalize to multiple tasks
% - E T ‘ r 8 & Can be trained end to end
‘_ : __’. ‘ : Agaregation . h. ", and optimized for the task
! : (sum) 1 i P I
. . d g x Original event arrival order is lost
/‘,/ . / X Aggregation step s fixed

Shared MLP
EST representation

Daniel et al, 2019

40


https://arxiv.org/abs/1904.08245

Matrix-LSTM: a Differentiable Recurrent Surface for Events POLITECNICO

0
0
x10° :
2
Time [us] 3 ' &

41



Matrix-LSTM: a Differentiable Recurrent Surface for Events POLITECNICO

(X, ¥) (X, y)

el E‘,i f(x.y] fix V) f(x )
1
X, .
), L — AL L7 //,4(/ s
(X, )f)l (xy (x V)T
Feature LSTM
sequences outputs

groupByPixel

. ' (x.y)
—> —> ST
E_ -

Tyl
N-HW x T,

42



Matrix-LSTM: a Differentiable Recurrent Surface for Events POLITECNICO

£ £ £ /) (x.¥) & Events are processed in

S
T
/ AR // - — [ sequence, reasoning on the

(X, )) (X, )’) (X \") ) .
! previous event dynamics

Feature LSTM & The event aggregation
seduences outputs mechanism is leamned through
| the LSTM gates (how, what
‘ E A ED x.y) and when)
groupByPixel . . S_T’
. = spatial information is preserved
NHW x Ty,

[t generalizes to multiple tasks

Can be trained end to end
and optimized for the task

43



MatrixLSTM: Optical flow prediction LA 568

MotrixLSTM Chons 012 Predicted Flow

MotrixLSTM Chans 456

44



Classification Experiments eIy

Method Classifier Channels  \ vars  N-Caltech101
(bins)
H-First [24] spike-based - 56.1 0.54
HOTS [15] histogram similarity - 62.4 21.0
Gabor-SNN [31] SVM - 78.9 19.6
SVM - 90.2 64.2
HATS [31] ResNet34-EST [10] - 90.9 69.1
ResNet18-Ev2Vid [26] - 90.4 70.0
Ev2Vid [26] ResNet18-Ev2Vid 3 91.0 86.6 1
Matrix-LSTM| ResNetl8-Ev2Vid 3(1) 95.80+0.53 84.12+0.84
(Ours) ResNet34-Ev2Vid 3 (1) 95.65+0.46 85.72 +0.37 0.9
ResNet34-EST 2 (9) 92.5 81.7 )
i ResNet34-EST 2 (16) 923 83.7 os
ResNet18 EST 16 (1) 94.37 £0.40 81.24 % 1.31 g o7 e
ResNet34-EST 16 (1) 94.31 +0.43 78.98 + 0.54 = -21'-* '_x_..--w—-~.___K,/"-\.?,_-""' E:
Matrix-LSTM|  ResNet18 EST 16 (2) 94.09 £ 0.29 83.42 £ 0.80 S os 2 oAt
(Ours) ResNet34-EST 16 (2) 94.31+0.44 80.45 +0.55 I e oy
ResNet18-EST 2 (16) 92.58 £ 0.68 84.31 £ 0.59 0.5 «— Gabor-SNN [31]
ResNet34-EST 2 (16) 92.15+0.73 83.50+1.24 —#— HOTS [15]
0.4 —4— Matrix-LSTM delay
—#— Matrix-LSTM delay + aug.
0.3
0 20 40 60 80 100

45

latency (ms)
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Learning from Limited Data

Adaptive Representations for
One-Shot Video Object Segmentation

46



Video Object Segmentation CMiLANG 863

New setting, new challenges

1 Segment given objects in the scene.
At test time, the first frame annotation
s available.

No explicit semantic attached to the
objects. Foreground/Background.

Remember the standard SL setting

Videos and objects in training set are

different from test set! e [ixed number of classes, same at training

and test time.

Generalize to new objects. e (eneralize to new samples of observed

objects.

47



DAVIS Dataset

Additional Challenges from DAVIS
1. Scarce data (only a few videos)

1. Ego-motion and occlusions

1. Objects change shape, size and
perspective during the video

POLITECNICO
MILANO 1863
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Supervised Learning Approach

Video Segmentation = Image Segmentation + Time Coherence

Modeling complex motion dynamics (RNNs)
Modeling the concept of objectness (CNNSs)

"

LS

Prediction at Prediction at

Frame GT epoch 1 epoch 10

Complex models with naive supervised
learning approaches quickly overfits

POLITECNICO
MILANO 1863
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Fine-Tuning approach S ic e

Base Network Parent Network

Test Network

"

o o R S Henfuaalisy STa

r.m= — gu-ul--u I
:-—v- ‘..-- 1] i- H l"‘

--Iml‘l-:-lu‘l. !! '

.!.. ] miand IH:&:. ——F1

i S

Results on frame N
of test sequence

: St
Pre-trained on ImageNet Trained on DAVIS training set Fine-tuned on 1** frame
of test each sequence

Caelles et al. (2017)

50


https://arxiv.org/abs/1611.05198

Fine-Tuning approach LA 568
Fine-Tuning each video on single annotation Test Network

& Simple yet effective method
x Not efficient: thousands of optimization steps per video

x Hyper-parameters of the test-time optimization are often
excessively handcrafted and fail to generalize between
datasets

x test-time optimization requires complicated augmentations
to avoid overfitting

Fine-tuned on 1% frame
of test each sequence

Caelles et al. (2017)

51


https://arxiv.org/abs/1611.05198

POLITECNICO

Meta Learning approach

Meta Learning is an elegant framework that can be used to extract and re-use
knowledge across collections of tasks,

s . - n.k n., k-
Meta-dataset: collection of episodes (or tasks). T =A{Ty.r} with T, . = {Dypin> Dicsi

Fach video object segmentation can be considered as an
independent task.

Segmentation task:
- D, . training set of a single example

train
-9

To

rest . lest set of next frames

Goal: generalize to other frames of the same video from a
single annotation.

Train and test condition match.

52



Model-based Meta Learning S ic e

(w*,¢%) = argmin Y > LF(f(w0i,w),y)
N Tivp(r)  (wy) €D
{Df'r‘azn ,D;)al }67'7,

st. 0; = (DI, )

Dz_ﬁrain
r xo
0,
v
Ty Fast Network

Nag

f(aj;‘gi’w)

53



FiILM: Conditioning Layer via Feature Modulation CMiLANG 863

Generating weights is unfeasible and prone to
overfitting for large networks.

More efficient approach: adapt features Bic
representation by conditioning it with task
specific affine transformations.

fi:’)’i@fi—l—ﬁi N’é

activation : .
1 g

Perez et al. (2017) 54



https://arxiv.org/abs/1709.07871

POLITECNICO

SanO'tem pOI’a| Featu reS MOd U|atIOﬂ MILANO 1863

Y Visual Modulation

‘ a a @ MLF’V6 1 MLF’wHMLPveI»y % Spatial Modulation

-

JUPR " A '5Y54 .' B
- -7, ’ ' AY ~
- Y3 . ¥ ‘., Yc5
« ek '-04 |
VGG4 VGGo VGG3 —< 3 VGGy : VGGs
A V' A 4 A A
1
' cLSTM3 ; cLSTMyq - cLSTM5
: : up and mi
: ! fuse
T T

Prediction Mask m,_,
(spatial prior)

___________________________
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Results on single-object segmentation O LANG 1858

Baseline (OSMN) vs ReConvNet (Ours)

56
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Results on single-object segmentation O LANG 1858

Baseline (OSMN) vs ReConvNet (Ours)
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Results on single-object segmentation O LANG 1858

Baseline (OSMN) vs ReConvNet (Ours)

58



Results on single-object segmentation O LANG 1858

Baseline (OSMN) vs ReConvNet (Ours)

59



Results on multi-objects segmentation LA 568

60
Ground Truth OSVOS-S ReConvNet (ours) ReConvNet (ours) with FT




Summary and Future Work

¥ Contributions

. NAIS-Net: a new neural network with stability
guarantees that can be used in safety critical
applications. (Ciccone et al. NeurlPS 2018)

POLITECNICO
MILANO 1863

@" Future work

€ NAIS-Net:
- Adversarial Robustness
- RL applications
- Flow-based generative models

61
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Summary and Future Work

¥ Contributions @ Future work
. NAIS-Net: a new neural network with stability o NAIS-Net:
guarantees that can be used in safety critical - Adversarial Robustness
applications. (Ciccone et al. NeurlPS 2018) - RL applications

- Flow-based generative models
Matrix-LSTM: a new general purpose

) differentiable representation for event-based data o Matrix-LSTM:
that can be used as input for any computer vision - Large scale benchmarks
task. (Cannici, Ciccone et al. ECCV 2020) - Prophesee Automotive Dataset

- New tasks: Object Detection, Depth estimation
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Summary and Future Work

¥ Contributions

NAIS-Net: a new neural network with stability
guarantees that can be used in safety critical
applications. (Ciccone et al. NeurlPS 2018)

Matrix-LSTM: a new general purpose
differentiable representation for event-based data
that can be used as input for any computer vision
task. (Cannici, Ciccone et al. ECCV 2020)

ReConvNet: an efficient method for Video Object
Segmentation that can adapt its representation at
test time to new objects with a single annotated
frame. (Lattari*, Ciccone* et al CVPRW 2018)

POLITECNICO
MILANO 1863

@" Future work

o NAIS-Net:
- Adversarial Robustness
- RL applications
- Flow-based generative models

o Matrix-LSTM:
- Large scale benchmarks
- Prophesee Automotive Dataset
- New tasks: Object Detection, Depth estimation

« ReConvNet:
- Improve Object localization and tracking
- Cross-domain One Shot Leamning
- Gradient-based adaptation
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& Thank you!

Questions?
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