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A B S T R A C T

Learning effective representations is crucial for scaling the performance of
machine learning methods. Deep Neural Networks are flexible models that
can learn powerful hierarchical representations by stacking several layers of
computations. However, once learned, adapting the representation to new
data or behaviours is nontrivial. In this thesis, we take a step in the direction
of learning adaptive representations for visual data addressing the problem
both from a practical and theoretical perspective.

First, we study Residual Networks from a dynamical system perspective
and augment them with a mechanism to automatically adapt the number of
processing steps based on the characteristics of the data.

Then, we focus on the problem of learning effective asynchronous rep-
resentations for event-based data. We propose a recurrent mechanism that
automatically learns how to incrementally build a two-dimensional represen-
tation from events, which can be used as input to convolutional frame-based
architectures to improve their performance on optical flow prediction and
image recognition tasks with respect to hand-designed features.

Finally, we focus on the challenging problem of One-Shot Video Object
Segmentation, where the model is asked to segment specific objects in
unseen videos after observing a single annotated frame. We tackle the
problem from a Meta-Learning perspective by showing that it is possible
to adapt a generic meta-representation to specific task-representations, by
modulating the activations of a segmentation network conditioned on the
given instance.
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1 I N T R O D U C T I O N

For years cognitive scientists studied the principles of intelligence and
human behaviours, trying to unravel the secrets of our mind. The first
attempts to understand how the brain processes information date back to
the Ancient Greeks, when Plato and Aristotle tried to explain the nature
of human knowledge. As humans, we understand the world by efficiently
encoding information in powerful abstractions and rich causal models that
allow us to generalize even from sparse, noisy, and ambiguous observations.
Since our first months of life, we develop skills that can be combined together
to solve more complex tasks. Even more fascinating is our capability to adapt
and make inference in new situations, by retrieving absorbed concepts and
inventing new solutions to problems never experienced before.

Artificial Intelligence (AI) has been a central part of cognitive science since
the 1950s and always had the ultimate goal of providing machines with
the same kind of reasoning capabilities as humans, understanding how
they can be so efficient in processing information. It soon became apparent
that distilling human knowledge directly into machines by writing ad hoc
programs is not scalable. As the complexity of the problems increases,
designing programs based on predetermined rules becomes unfeasible.
Computers should learn rules by themselves, exploring the world as humans
do. Machine Learning allows us to design machines that automatically learn
algorithms from experience. By processing data autonomously, algorithms
can improve themselves, learning how to extract patterns or input-output
mappings from examples.

1.1 representation learning
The performance of machine learning methods is strictly dependent on the
choice of data representation. Feature engineering aims to design features
that support effective learning by taking advantage of prior knowledge on
the task. However, designing powerful informative features is challenging
and time-consuming, often requiring the opinion of domain experts. Scaling
machine learning to more complex scenarios requires making algorithms
less dependent on feature engineering and automatizing this process. By
learning optimal representations directly from data, rather than by hand
designing features based on heuristics, Representation Learning provides

1



1.2 motivation: adaptive and conditional computation in neural networks 2

artificial agents with the ability to understand the world by identifying and
disentangling the underlying explanatory factors hidden in raw data.

In the last decade, deep learning methods have become the primary tool
for learning representations, rapidly becoming one of the most prolific re-
search areas. By often leveraging massive annotated datasets, GPU-based
parallelization, and new frameworks for automatic differentiation, deep neu-
ral networks are behind the most recent revolution in Artificial Intelligence,
becoming the horsepower of a plethora of applications that span from Com-
puter Vision and Natural Language Processing to Reinforcement Learning.
Thanks to their compositional nature, deep neural networks are particularly
suitable for representation learning. Indeed, the reasons for their success are
to be found in their ability to learn distributed hierarchical abstractions directly
from raw data through the composition of multiple nonlinear projections.
Learning several layers of abstraction by jointly training them repeatedly
warps the input space, making the task easier to solve for the predictor.

1.2 motivation: adaptive and conditional com-
putation in neural networks

With the increasing pervasiveness of intelligent systems in our daily life,
it becomes of vital importance to design adaptive models that can modify
their behaviour at inference time when required.

Think of a robot that is trained to perform a specific task, for instance, to
grasp an apple from a table. One could try and train such a robot on several
hours of experience until it successfully learns how to grasp it. But what
happens if we ask the robot to perform the same task on a different object,
for instance, something with a completely different shape and physical
properties, such as a glass of water. Unfortunately, we can not expect the
robot to succeed since it never experienced something like that before. In
general, one could mitigate the problem by collecting more experience and
training in multiple scenarios. Still, while the robot might learn to perform
the tasks seen during training, it would unlikely generalize to some new
behaviours by itself. This is not limited to robotics tasks, but rather the same
rationale can be applied to any other domain. For instance, one would want
to train a recognition system that has to recognize new persons from their
face. Instead of training a model from scratch every time a new person
appears in an image or video, it would be much more efficient to create
a system that can be calibrated on different faces just by observing few
examples. In order to achieve that, we have to explicitly design a system that
can adapt to new situations with few interactions with the world without
the need to learn everything from scratch.



1.3 main contributions and outline 3

The flexibility of machine learning models can also be analyzed from a
computational perspective. Neural Networks build powerful representations
by performing successive steps of computation, i.e., through layers. The
optimal number of steps to solve a task can vary from input to input and is
usually fixed for practical reasons. However, it might be the case that some
problems are more challenging to solve than others, and thus require more
processing time.

It is in fact often the case that the representation extracted from the input
after only a few layers is already rich enough to solve the task at hand, and
that a lot of computational power is wasted by processing this intermediate
representation through several more layers.

In turn, the human brain is highly efficient, and it adapts its computational
budget to the complexity of the problem. The input can also be asynchronous,
requiring the model to integrate information over time to incrementally
build a representation and eventually refine its prediction. Machine learning
algorithms with the ability to adapt the amount of computation as required
by the circumstances are crucial, especially in those scenarios where power
efficiency is at the essence, such as the deployment of robots and drones.

1.3 main contributions and outline
This thesis describes advancements in learning adaptive representations for
visual data addressing the problem both from a practical and theoretical
perspective. We develop a new neural network model for adaptive com-
putation that executes a varying number of computational steps based on
the processed sample’s characteristics (Chapter 3). We propose a recurrent
model for asynchronous event-based data that incrementally builds a two-
dimensional representation from a stream of sequential events (Chapter 4).
Finally, we also introduce a recurrent and convolutional model for video ob-
ject segmentation that can modulate its internal representation at inference
time to new objects never observed before (Chapter 5). The rest of the thesis
is organized as follows:

• Chapter 2 provides the reader with the necessary Machine Learning
background to understand the contributions of the thesis.

• Chapter 3 focuses on the study of Residual Networks (He et al., 2016)
(ResNets) one of the most successful neural architectures for com-
puter vision. ResNets, along with Highway Networks (Srivastava et al.,
2015a) gave an important contribution to the field of deep learning,
enabling the training of very deep neural networks via gradient-based
learning with just a simple architectural modification: skip connections.
This chapter carries out a theoretical analysis of ResNets from a dy-
namical system perspective, explaining the reason why these models
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perform iterative computation through successive additive non-linear
projections (Greff et al., 2017; Jastrzebski et al., 2018). Starting from the
observation that ResNets are unrolled time-invariant dynamical sys-
tems, we identify the issue of system stability and propose NAIS-Nets,
a novel architecture that can be unrolled with convergence guarantees.
We derive proofs and perform an extensive experimental analysis that
confirms our theoretical results. We also show that the proposed stable
architecture encourages conditional iterative computation, by assigning
similar processing depths to samples with similar characteristics.

The chapter is based on Ciccone et al. (2018), published at the NeurIPS
2018 conference. The work has been carried out during an internship at
NNAISENSE SA, Lugano.

• Chapter 4 focuses on the problem of learning representations for asyn-
chronous event-based data. Event-cameras are modern sensors inspired
by the functioning of the human vision system. Rather than producing
full frames at regular time intervals as in conventional RGB cameras,
each pixel senses brightness changes independently and outputs trains
of raw events based on the scene dynamics. Although they provide
several advantages over traditional image acquisition devices (e.g, low
latency, high dynamic range, and high temporal resolution), their true
potential is still to be unlocked since novel methods are required to
deal with the asynchronous and sparse nature of their outputs. In this
chapter, we take a first step in this direction by proposing a novel repre-
sentation for event-based data that replaces hand-engineered features
with a learned integration mechanism. We propose a drop-in replace-
ment input layer, Matrix-LSTM, based on a grid of LSTM (Hochreiter
and Schmidhuber, 1997b) cells that incrementally process events as soon
as they arrive, by updating a two-dimensional time-surface that is
optimal for the task at hand. We show that Matrix-LSTM produces a
powerful grid representation that can be used as input to any mod-
ern computer vision pipeline, retaining most of the advantages of
asynchronous data.

The chapter in based on Cannici et al. (2020), published at the ECCV 2020
conference.

• Chapter 5 addresses the problem of learning new tasks from few
examples. We focus on the challenging problem of One-Shot Video
Object Segmentation, where the model is asked to segment specific
objects from new videos after observing a single annotated frame. We
tackle the problem from a Meta-Learning (Baxter, 1995; Schmidhuber,
1987) perspective by showing that it is possible to adapt a general
meta-representation to specific task representations conditioned on
the given context. We propose a meta-learning system based on two
learning levels: a backbone segmentation network learns to perform
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generic segmentation strategies, while secondary networks modulate
its representation by generating task-specific weights.

The chapter in based on Lattari et al. (2018), published at the Workshop on
Video Object Segmentation - DAVIS Challenge at CVPR 2018 Conference.

• Chapter 6 gives a unifying view of the thesis and outlines some promis-
ing future directions.



2 B A C KG R O U N D

This chapter gives a brief and self-contained introduction of the main ma-
chine learning and deep learning tools used throughout this thesis to provide
the reader with the notation and the necessary background to understand
the presented concepts. Additional background topics will be introduced
later where necessary. The resources in this chapter are adapted from the
comprehensive Deep Learning textbook (Goodfellow et al., 2016), while we
refer the readers to Bishop (2006) and Murphy (2012) for more detailed
discussion on the fundamentals of machine learning, and to Shalev-Shwartz
and Ben-David (2014) for statistical machine learning theory.

2.1 learning from experience
Machine Learning is the study of computer algorithms that improve auto-
matically through experience:

“A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T, as
measured by P, improves with experience E.”

This informal definition from Mitchell (1997) can result in a variety of
possibilities for the experience E, the task T and the performance metric
P, depending on the operative framework that we might want to use to
build machine learning algorithms. Alternatively we can provide intuitive
descriptions on what kind of objects can be used for each of these entities.

task Machine Learning helps us by tackling problems that are too difficult
to be solved by designing programs with a set of predefined rules. In other
words, a task is a problem that we want to solve, and the process of learning
the task is our means of attaining the ability to solve it. More naively, we
expect that a machine learning algorithm would develop an understanding
of the task to be solved by interacting with collected data and updating its
own knowledge of it.

Usually, a machine learning algorithm is described in terms of its ability to
process an example as input. Examples are defined, for instance, as vectors
of features x ∈ Rn, that represent the input sample. Depending on the output
mapping considered, we can list different classes of tasks:

6
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• Classification: the algorithm is asked to assign a class k among a set
of possible categories to a given input. This is usually achieved by
learning mapping in the form of f : Rn → {1, . . . , K}.

• Regression: the algorithm is asked to predict a real value, given some
input. The task can be solved by learning the input-output mapping
as a function f : Rn → R.

• Transcription/Translation: in this setting, the output to be predicted is
a sequence of symbols. In the first case, the algorithm can observe an
unstructured representation that has to be transcribed, while in the
latter case, the input is already a sequence to be translated into another
language or space of symbols.

• Structured output: these types of tasks involve any function mapping
where the output is a vector of predictions or any other data structure
containing multiple values, sharing relationships across the elements.
This might be considered a superclass of the previous tasks, but other
problems fall into this category.

In the context of computer vision, one may consider a structured clas-
sification task as pixel-segmentation. The task requires to assign a
specific category to each pixel considering the surrounding context to
produce a coherent segmentation. In a structured regression task as op-
tical flow estimation, the computer program analyses two subsequent
frames and outputs the vector displacement of each pixel.

Depending on the area of application, we can define many other tasks
and classes of tasks. In this thesis, we are going to focus only on the types
of tasks presented above.

performance measure It is necessary to define a metric to evaluate a
machine learning algorithm’s ability to perform on a specific task T. The
performance measure is generally defined as a numerical value computed
on a subset of data by comparing the prediction output of the algorithm
and its ground truth value. We are generally interested in measuring the
quality of the algorithm on data never observed during the learning process
to analyze its generalization capability.

The choice of the correct performance metric is far from trivial and it
is has the same importance of the algorithm itself. For example, when
performing pixel-segmentation, we are not usually interested in the accuracy
defined as the number of correctly classified pixels over the total amount of
pixels. That would be biased towards classes of objects that are much more
represented than others, such as the background. Instead, we are interested
in a measure such as the mean Intersection-over-Union that tells us how
much the prediction overlaps with the target, penalizing both false positive
and false negative.
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It is important to note that it is not always possible to optimize the
performance measure we are interested in directly. It is often necessary to
find related proxies that are easier to compute or optimize to allow the
algorithm to effectively learn the task at hand.

experience The experience E is defined as the data that a machine
learning algorithm can process to learn how to solve the task. Machine
Learning algorithms are generally categorized under three main learning
paradigms based on what kind of experience they have access to during the
learning process. We define a dataset as the entire collection of experience,
and the examples that form the dataset as data points.

• Supervised Learning algorithms observe a dataset where each sample
x is paired with a label or target y provided from a knowledgeable
external supervisor. The learning task is often formalized as estimating
p(y|x) and the learning algorithms learns the mapping function from
x to y.

• Unsupervised Learning algorithms experience a dataset that provides
only examples x, then learn to extract hidden patterns in the unlabeled
data by clustering together similar examples. Usually, we are interested
in learning the generative model of the dataset p(x), whether explicitly
as in density estimation tasks or implicitly via denoising or synthesis.

• Reinforcement Learning algorithms aim to learn the optimal policy of an
agent by interacting sequentially with an environment and observing
a reward signal. The agent’s goal is to maximize the total reward it
receives over the long run by performing actions in each state he visits.

In this thesis, we focus solely on supervised and unsupervised learning
settings in the context of computer vision tasks such as image classifica-
tion Chapter 3 , optical flow prediction Chapter 4 and object segmenta-
tion Chapter 5.

2.2 supervised learning
So far, we only gave an intuitive explanation of a machine learning algorithm
and its components without providing any operative description. In this
section, we focus on supervised learning, and we formalize it in a principled
way using the Empirical Risk Minimization framework (Vapnik, 1992; 1998).

Consider an input space X and an output (or target) space Y , where typi-
cally X ⊆ Rd. The form of the output space yields different kinds of tasks:
regression Y ⊆ R, binary classification Y = {−1;+1}, multi-class classifi-
cation Y = {1, . . . , K}. Let (x, y) be a pair of random variables distributed
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according to the unknown joint probability distribution p(x, y), defined over
the data space X ×Y .

Let Dn = {(x1, y1), . . . , (xn, yn)} be a training dataset made of n identically
and independently distributed (i.i.d.) input-target pairs, that we assume to
be representative of the data distribution p(x, y). Supervised Learning can be
formalized as the process of finding the input-output mapping f : X → Y
based on the training data Dn to predict via f (x) the output corresponding
to any new input x ∈ X . This is usually achieved by searching for a good
approximation of the true mapping over a class of candidate functions H,
called hypothesis space. More precisely, we can formulate an optimization
problem:

R∗ = min
f∈H

R( f ), (2.1)

where H can be any class of functions such as linear functions, radial basis
functions or deep neural networks, and R is a “risk” functional that depends
on the training data. For any fixed loss function ` : Y : Y → R, the risk is
defined as the expected loss over the data distribution:

R( f ) = Ep(x,y) [`(y, f (x))] =
∫ ∫

`(y, f (x))p(x, y)dxdy (2.2)

The loss function is a point-wise measure of the error `(y, f (x)) made by
predicting f (x) when the actual output is y, while the risk is a measure of
the average performance of the machine learning algorithm on the task.

2.3 empirical risk minimization
Given a fixed loss function `(·, ·), the true risk minimization is generally non-
trivial because the underlying data distribution in unknown, making the
expectation in Equation (2.2) non-computable and the optimization problem
in Equation (2.1) intractable.

Instead of minimizing R( f ) directly, one may replace the true data dis-
tribution p(x, y) by its empirical distribution computed using the training
dataset Dn, and obtain the following minimization problem:

R̂n = min
f∈H

1
n

n

∑
i=1

`(yi, f (xi)), (2.3)

which is called Empirical Risk Minimization (ERM) (Vapnik, 1992). Because the
data distribution is unknown, instead of minimizing the risk directly, ERM
uses a sample-based estimate to optimize the true risk. In particular, it can
be shown that, under some conditions, ERM is statistically consistent, meaning
that, more data is collected, the empirical risk converges in probability to its
true value, and ERM corresponds to minimizing the true risk (Shalev-Shwartz
and Ben-David, 2014; Vapnik, 1998).
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maximum likelihood estimation The induction principle of empirical
risk minimization is quite general and encompasses many popular learning
methods. For instance, restricting the space of hypothesis to H = { f (x) =
θTx ∀θ ∈ Rd} and taking a square loss function `(y, f (x)) = (y− f (x))2,
corresponds to the well known least squares estimation. Maximum likelihood
estimation (MLE) (Bishop, 2006; Murphy, 2012) is a also a special case of ERM
where the loss function is the negative log-likelihood:

θMLE = arg min
θ

1
n

n

∑
i=1

p(y|x, θ), (2.4)

2.4 model complexity: underfitting vs over-
fitting

Although under certain conditions the empirical risk corresponds to the
true risk when the sample size n grows, in practice, the number of samples
is always finite. As a result, the actual predictor might not minimize the
actual risk, especially when the space of hypothesis H is large, and the
number of samples is limited. When we have a small empirical risk but still
a relatively large true risk, we say that the algorithm is overfitting the training
data. A good learning algorithm should provide a similar behaviour to the
target function and perform well on new, previously unseen data — never
experienced in the training set Dn. In this case, we say that the algorithm
generalizes well. We typically estimate the generalization error of a predictor
by measuring the performance on a test set of examples that were separately
collected from the training set, under the assumption of being identically
distributed.

Suppose that f̂n is the ERM hypothesis of a predictor, namely a function
in H that minimizes the empirical risk, and suppose to know that the best
predictor among H is:

f ∗ = arg min
f∈H

R( f ), (2.5)

we can define the excess risk of f̂n and decompose the error of an ERM
predictor in two components as follows:

R( f̂n)−R∗ = (R( f ∗)−R∗)︸ ︷︷ ︸
approximation error

+
(
R( f̂n)−R( f ∗)

)
︸ ︷︷ ︸

estimation error

(2.6)

The approximation error measures the risk caused by the restriction to a
specific class of hypothesis H, also called inductive bias. The approximation
error is deterministic and does not depend on the sample size. It can be
reduced by extending the hypothesis class to other functions. The estimation
error represents how much we are losing in terms of risk by using a finite
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sample approximation instead of using the true data distribution, and it
gives a measure of the quality of the training set.

Similarly to the bias-variance trade-off for standard statistical estimation
problems (MacKay, 2003), there is also a tension between the approximation
error and estimation error. The approximation error term acts like a bias
square term while the estimation error acts like the variance term. Choosing
a very rich class of candidate functions H decreases the approximation error
at the cost of the estimation error, but it might lead to overfitting. On the
other hand, restricting H reduces the estimation error but might increase the
approximation error because the predictor might not be expressive enough
to represent the true mapping leading to underfitting.

2.5 regularization techniques
Overfitting can be mitigated by following the Occam’s razor principle (Domin-
gos, 1999) of “parsimony of explanation”, which states that if two models
explain data equally one should chose the simplest one, based on some
notion of complexity. Model regularization is usually achieved by adding
a penalization term λR(θ) to the objective function that encourages the
learning of simpler models over complex ones, where λ is a coefficient that
regulates the level of regularization R(θ), that is function of the model. In
the context of ERM, adding regularization terms that penalize model com-
plexity is usually referred to as Structural Risk Minimization. From a Bayesian
perspective, adding a regularization term can be interpreted as imposing a
prior over the parameters of the model. For example, a penalty in the form
of λR(θ) = θTθ = ‖θ‖, also called weight decay or simply L2 regularization
corresponds to assuming that the parameters are normally distributed with
zero mean (Bishop, 2006).

2.6 stochastic gradient descent
Gradient descent is an iterative optimization algorithm that improves the
problem’s solution by taking a step in the direction of the negative of the
gradient of the function to be minimized at the current point.

When the class of candidate functions and the loss function are differen-
tiable, the risk functional is also differentiable and the minimization can be
efficiently solved, albeit approximately, by applying numerical optimization
techniques such as Stochastic Gradient Descent (SGD) (Robbins and Monro,
1951). When the exact gradient is not available, stochastic gradient descent
circumvents this problem by allowing the optimization procedure to take a
step along a noisy direction, as long as the expected value of the direction
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is the negative of the gradient. SGD provides a method to optimize directly
the risk functional since the gradient of the loss function on a randomly
sampled example is an unbiased estimate of the gradient of the risk.

Ep(x,y) [∇`(y, f (x))] = ∇Ep(x,y) [`(y, f (x))] = ∇R( f ) (2.7)

Given a dataset of examples, training a model via gradient descent simply
consists in repeatedly sampling data points and applying the following
update rule at each i-th iteration to modify the parameters of the model θ in
the direction that minimizes the loss:

θ(i+1) = θ(i) − η∇`(θ(i)) (2.8)

where θ(0) is randomly initialized, η is the learning step, ` : Rn → R and
the vector of partial derivatives is ∇`(θ) =

(
∂`(θ)
∂θ1 , . . . , ∂`(θ)

∂θn

)
.

Combined with automatic differentiation and recent advances in stochas-
tic optimization (Duchi et al., 2011; Hinton et al., 2012; Kingma and Ba,
2015; Nesterov, 1983a; Zeiler, 2012) this provides a turnkey approach to
fitting modern differentiable machine learning models such as deep neural
networks (see Section 2.7.4.1 for more details).

2.7 neural networks
Neural Networks (NNs) are popular machine learning models that are able
to capture input-output relationships and complex patterns in the data.
Thanks to their expressivity, NNs can be employed in many machine learn-
ing problems whether in supervised, unsupervised, or reinforcement learn-
ing (Bishop, 2006; Sutton and Barto, 1998) settings.

Early Neural Networks’ ancestors (e. g. Perceptrons (Rosenblatt, 1958),
Neucognitron (Fukushima, 1980)), were loosely inspired by models of infor-
mation processing in human and mammals brains but soon drifted from
their initial biological inspiration. Since their introduction, these models
have received moderate interest from the scientific community and are con-
sidered the cornerstones of modern neural networks. Nevertheless, research
on neural networks stagnated for many decades before the recent deep
learning revolution. One of the reasons for the initial lost of interest in
neural networks was the lack of an efficient algorithm for training complex
models. Before the discovery of the backprogation algorithm, NNs were con-
sidered intractable models. For a detailed survey on the history of neural
networks, from the first connectionist models to the recent developments, we
refer to Schmidhuber (2015). In the rest of the chapter, we introduce the
basic concepts of modern deep learning architectures preparatory for under-
standing the thesis. An exhaustive treatise of machine learning and neural
networks can be found in Bishop (1995), Bishop (2006) and Goodfellow et al.
(2016).
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A Neural Network can be described as a system of basic processing units,
the neurons, that are connected by weighted directed edges. The information
flows through the computational graph, and it is processed by the neurons
as a function of their input — the produced output is also called the activation.
Connections between neurons, the weights, are gradually adjusted during
the learning process and determine the contribution to the output of the
signals generated by the source neuron. The set of units in the graph are
typically organized into sequences of layers; the number of units in a layer is
referred to as its width and the total number of processing layers indicates
the depth of the neural network. The set of neurons that processes the source
information is usually referred to as input layer, while the ones that produce
the prediction are called output layer. All the other layers are generally called
hidden layers.

NNs with acyclic computational graph are named Feedforward Neural Net-
works (FNNs) because the information flows only in one direction, while those
with cyclic graphs are called Recurrent Neural Networks (RNNs). Thanks to
self-connections, RNNs can process sequential inputs and retain previously
processed information to be used at future time steps.

Neural Networks’ flexibility make them a perfect family of candidate
functions for risk minimization. FNNs are in fact know to be universal func-
tion approximators, i. e. a feedforward neural network with a single hidden
layer can approximate any measurable function to any desired degree of
accuracy on a compact set (Cybenko, 1989; Hornik, 1991; Hornik et al., 1989).
Similarly, it has been shown that RNNs are Turing-complete (Siegelmann
and Sontag, 1995). Although FNNs with few hidden layers can potentially
represent any function, distributing the computation across multiple layers
can be exponentially more efficient for some class of functions (Delalleau
and Bengio, 2011; Montufar et al., 2014). Based on this observation, modern
neural architectures builds hierarchical data abstractions growing models in
depth, improving model efficiency at the expense of trainability — see Sec-
tion 2.7.4.4 for more details on the difficulties of training neural networks.

We now present an overview of the types of layers and neural networks
that are used in this thesis. In order to keep the notation uncluttered, the com-
putational graph of each layer is described in terms of matrix multiplications
rather than single units interactions.

2.7.1 Types of Layers and Networks

multilayer perceptron A Multilayer Perceptron (MLP), is the simplest
kind of neural network and it consists of a series of dense layers where
each neuron is connected to all of its input, called fully-connected layers. An
MLP can be represented by a function : Rd → Rm that maps from the input
to the output space via a composition of L layers. Each fully-connected
layer, ` ∈ {1, . . . L}, involves first an affine transformation of the input,
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parametrized by a matrix of weights W` and a bias vector b`, followed by a
non-linear activation function f (·), that warps the hidden space. The input
x` of an hidden layer is the output of its predecessor y`, and each layer is
applied in chain until the final output ŷ = yL is produced:

x` = y`−1 (2.9a)
z` = W`x` + b` (2.9b)
y` = f (z`) (2.9c)

The activation functions employed in MLPs are generally point-wise non-
linearities such as hyperbolic tangent f (x) = tanh(x) or logistic sigmoid
f (x) = 1

1+exp(−x) , but in the recent years, non-saturating functions such as
Rectified Linear Units (ReLU) (Glorot et al., 2011; Jarrett et al., 2009; Nair and
Hinton, 2010) f (x) = max(0, x) or other variants (He et al., 2015) have been
preferred thanks to their better trainability properties. See Section 2.7.4.3 for
more details.

convolutional and pooling layers Similarly to MLPs, Convolutional
Neural Networks (CNNs) (LeCun et al., 1998a; LeCun, 1989) are a kind of
feedforward neural network where layers form a linear computational graph.
CNNs are particularly well suited for signals with spatial regularities thanks
to special layers designed to exploit spatial patterns in data with a grid-like
topology such as images. The main difference with fully-connected layers
consists of how the units are connected and how the input is processed
to preserve its spatial structure. Rather than applying a large matrix of
weights to the whole input, convolutional layers take advantage of the
convolutional operator to process only a portion of the input at the time and
apply the same linear transformation in a sliding window fashion — this
way of processing spatial data results to be beneficial for multiple reasons.
Firstly, each neuron is connected only to a portion of the input, the receptive
field, drastically reducing the number of parameters and implementing a
form of weight sharing. Secondly, the convolution operator is equivariant
to any function g(·) that translates the input. In other words, applying a
transformation f (·) to a shifted version of an input x, produces the same
result as applying the transformation to x and then shifting the transformed
input, namely f (g(x)) = g( f (x)). This property is particularly useful in
image recognition tasks where the same local feature should be detected
regardless of its position in the image.

The weights of a convolutional layer are usually called filters or kernels,
an inheritance from the signal processing community. In general each con-
volutional layer learns a group of filters and the output after the activation
function is a volume called feature map.

CNNs often reduce the spatial dimensionality of their inputs by applying
the convolution operator every s pixels rather than at each location of the
image, i.e., with stride s > 1, or by utilizing pooling or sub-sampling layers.
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Commonly, pooling layers aggregate the receptive field by taking their mean
or max value. Convolutional layers can also perform the opposite operation
and increase the input size via an upsampling operation (Long et al., 2015;
Simonyan and Zisserman, 2015; Zeiler and Fergus, 2014). Further details
on convolutional and pooling layers can be found in the detailed guide to
convolution arithmetic for deep learning (Dumoulin and Visin, 2016).

recurrent layers In principle, NNs with feedforward connections can
deal with sequential data by processing multiple inputs in a fixed-length
window at the same time (Lang et al., 1990). These types of NNs are called
Time-Delay Neural Networks (TDNNs). From a signal processing point of view,
a TDNN is equivalent to preprocessing a temporal sequence via a tapped
delay and feeding it to a discrete-time nonlinear filter with a finite impulse
response (FIR). The coefficients of the filter are the weights of the neural
network and are learned from data.

Although Time-delay NNs showed to be promising for application such
as speech processing (Lang et al., 1990; Waibel et al., 1989), they can only
capture temporal dependencies that happen within the fixed and predeter-
mined window size. A more flexible solution is represented by Recurrent
Neural Networks (RNNs) that can potentially model temporal patterns that
span an indefinite number of steps. RNNs can have different topologies
and characteristics, see (Elman, 1990; Lang et al., 1990; Pearlmutter, 1995;
Werbos, 1988; 1990), and (Jaeger, 2001; 2002; Maass et al., 2002) for some
early architectures.

In modern neural networks, a simple recurrent layer (RNN) is obtained
by augmenting a feedforward layer with feedback connections, so that the
output at time step t is a function F : Rd → Rn of the inputs and its output
at the previous time step, namely F (xt−1, ut; Θ), where all the parameters
have been collected in Θ for brevity. The recurrent layer can be expressed by
the following recursive equation:

xt = f (Wrecxt−1 + Winut + b) (2.10a)

where Win ∈ Rn×d is the weight matrix which transforms the current
input, Wrec ∈ Rd×d is the matrix containing the parameters of the recurrent
connections weights, which transform the previous output of the layer and
b are the neurons biases. The internal state of the layer is mapped to the
output vector xt via a nonlinear activation such as tanh or sigmoid. The state
x0 is typically initialized to zero or another constant value, but it can also
be filled with random noise. Alternatively, the initial state can be learned
during training.

Simple RNN layers are theoretically powerful and they can in principle
learn any program that can be executed by a Turing machine (Siegelmann
and Sontag, 1995), i.e., they are Turing Complete, but are hard to train with
gradient-based algorithms. Long Short-Term Memory (LSTM) (Hochreiter and
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Schmidhuber, 1997b) addresses the limitations of recurrent architectures by
adopting a specific design to improve gradient flow during training. We
discuss the difficulties of training RNN layers with gradient-based algorithms
in Section 2.7.4.4, while the LSTM layer and its advantages in Section 2.7.5.1.

2.7.2 Training Neural Networks

Consider the case of a machine learning algorithm that should learn to solve
a complex decision making problem. Games have always been the preferred
benchmark to evaluate artificial intelligence programs’ performance (Brown
and Sandholm, 2018; Campbell et al., 2002; Silver et al., 2016; 2018; 2017), so
consider, for instance, a board game such as chess or go. Let assume that the
program receives a single bit of information that evaluates its performance
at the end of the game, 0/1 — win or lose. The game’s outcome is the
result of several intermediate moves, each contributing to some extent to the
program’s final performance. The credit assignment problem (Minsky, 1961)
arises when the learning algorithm has to evaluate the goodness of all the
intermediate decisions that it had to make, understanding which decisions
should have been made differently to obtain a better result. In particular,
credit assignment is essential for efficiently finding the solution to complex
problems in a finite (or reasonable) amount of time, and in consequence of
that, speeding up the learning.

The scenario that we described seems to fit the only specific type of
reinforcement learning problems involving sequential decision making but
is more general than that. The credit assignment problem is also relevant to
settings involving the learning of static input-output mappings. The success
of modern supervised learning models relies on learning powerful features
extractors that build hierarchical representations. Rather than manually
designing features that might be sub-optimal, Representation Learning (Bengio
et al., 2013) delegates the feature extraction phase to several units learned
explicitly for the task at hand. Neural Networks implement this mechanism
efficiently via a composition of differentiable functions. If properly trained,
a deep neural network can produce an internal representation of the data
with several levels of abstraction (Rumelhart et al., 1986), far more general
than hand-designed features (Dosovitskiy and Brox, 2016; Erhan et al., 2009;
Mahendran and Vedaldi, 2015; Simonyan and Zisserman, 2015; Yosinski
et al., 2015; Zeiler and Fergus, 2014).

The process of extracting successive intermediate representations can be
thought as taking sequential steps to compute the task’s internal repre-
sentation. Assigning appropriate credit to each of the units participating
in the computation of the representation is crucial for fast and effective
learning (Rumelhart et al., 1986). In the literature, the problem of correctly
evaluating the contribution of specific nodes of a system involved in the com-
putation of a prediction is known as structural credit assignment. In contrast,
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temporal credit assignment refers to evaluating the contribution of actions to
the outcome in sequential decision-making problems. Further details on
temporal credit assignment can be found in Sutton and Barto (1998).

2.7.3 Backpropagation Algorithm

The backpropagation algorithm, or simply backprop is an efficient method for
computing the derivative of the output of neural networks with respect to
its parameters. In particular, backprop solves the credit assignment problem
in neural networks by propagating the prediction error from the top of the
network through all its modules, and evaluating their contributions to the
final output.

The merit of proposing the backpropagation algorithm is often assigned
to Rumelhart et al. (1986), who showed that neural networks could be
successfully trained to learn useful representations; however, the first appli-
cation of backprop to neural networks dates back to Werbos (1974), 1981.
The algorithm was soon generalized to tackle the credit assignment prob-
lem in recurrent neural networks as well (Werbos, 1988). Backpropagation
Through Time (BPTT) allows computing the gradients of an RNN as if it was
a feedforward network by applying backprop to the unroll of its computa-
tional graph. More details on the history of backpropagation and a detailed
overview of structural credit assignment in neural networks, can be found
in Schmidhuber (2015).

Backprop requires first to process an input x and compute the final output
ŷ. This phase is generally called forward propagation or forward pass because
the information flows forward from the input layer through the network.
During training, the forward pass evaluates also a scalar performance metric,
called loss or cost function L(θ), which has to be differentiable. Then, back-
propagation computes the derivatives of the loss function with respect to the
network’s parameters — this step takes the name of backward pass because
the layers of the network are visited in reversed order. In a second stage,
the derivatives are then used to compute the weights adjustments, usually
via gradient descent. Is is important to highlight that these two stages are
distinct.

We now follow the derivation as presented in Bishop (1995) and consider
the backward pass of an MLP with ` = {1, . . . , L} layers described by the
forward pass equations in 2.9. The gradient of the loss function L with
respect to the parameters of the layer ` are:

∂L
∂W`

=
∂L
∂yL

∂yL

∂W`
(2.11a)

∂L
∂b`

=
∂L
∂yL

∂yL

∂b`
(2.11b)
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We first introduce a useful notation δ` for the layer `, to indicate the local
error of the layer with respect to the output, or simply the delta:

δ` =
∂yL

∂z`
(2.12)

The derivatives of the output with respect to the parameters of layer ` can
be expressed as:

∂yL

∂W`
=

∂yL

∂z`

∂z`
∂W`

(2.13a)

∂yL

∂b`
=

∂yL

∂z`

∂z`
∂b`

(2.13b)

From the forward pass in Equation (2.9c), the derivative of the pre-activation
variable z` with respect to its parameters is given by the input of the layer
x`, namely the activation of the previous layer:

∂z`
∂W`

= xT
` (2.14a)

∂z`
∂b`

= 1 (2.14b)

By replacing Equation (2.12) in Equation (2.13) we can write:

∂yL

∂W`
= δ`xT

` (2.15a)

∂yL

∂b`
= δ` (2.15b)

The key feature of backpropagation is that the activations computed in
the forward pass can be stored to make the computation of the backward
pass much more efficient. Thus, evaluating the derivatives only requires
to calculate the value of δ` for the output and hidden layers and then
apply Equation (2.15):

δL = f
′
(zL) (2.16a)

δ` = WT
`+1δ`+1 · f

′
(z`) (2.16b)

The backpropagation formulae tell us that the contribution of the units of
each layer can be computed by propagating the δ backwards from units
higher up in the network. Interestingly, backprop is a special case for scalar-
valued functions of the reverse accumulation mode (Griewank and Walther,
2008) for automatic differentiation. For more details on automatic differenti-
ation techniques we recommend this survey Baydin et al. (2017).
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2.7.4 Training challenges of Neural Networks

Training models with a large number of parameters such as neural networks
requires solving a complex optimization problem. In general training NNs
is NP-hard, and there is no efficient algorithm for finding a solution to the
optimization problem for general topologies and tasks (Blum and Rivest,
1992; Hammer and Villmann, 2003; Judd, 1990).

In practice, the training complexity of NNs is overcome by exploiting
their differentiability and the efficiency of the backpropagation algorithm in
computing derivatives of complex compositions of functions. Indeed, under
the correct hyper-parameters choice, simple gradient methods are able to
find optimal parameter configurations that are global minimizers for a given
training set (Boyd et al., 2004).

Unfortunately, gradient-based learning is not free of issues, especially
when it involves optimizing millions of parameters, such as in NNs. Al-
though NNs are universal function approximators, and in principle, even
the simplest MLP is capable of learning any function (Hornik, 1991; Hornik
et al., 1989), the optimization algorithm could fail in minimizing the objective
in terms of performance or available time budget, resulting in underfitting
the training data. Specifically, the loss landscape of NNs is in general non-
convex with multiple saddle-points, local minima, and plateau, causing
gradient-based optimization to be highly unstable or to stagnate in poor
solutions (Choromanska et al., 2015; Dauphin et al., 2014; Hochreiter and
Schmidhuber, 1997a; Li et al., 2018a). These difficulties have motivated spe-
cific techniques and model architectures to improve the training efficiency
of gradient-based algorithms.

2.7.4.1 Gradient-based optimization

Stochastic Gradient descent follows the negative direction of the expected
gradient to minimize a certain functional in the weights space. When the
learning rate decreases with the appropriate rate, this technique converges
almost surely to the global minimum if the objective function is convex (Bot-
tou, 1998; Robbins and Monro, 1951). On the contrary, neural networks
generally provide non-convex optimization problems, limiting our ability
to characterize their loss surface and to develop convergence results for the
optimization algorithms. Indeed, the composition of several nonlinear func-
tions results in loss landscapes presenting high dimensional valleys, plateau
or ravines (Sutton, 1986) that requires different step sizes along different
dimensions in order to be escaped. In this situation, following the actual
steepest descent might not be the best strategy. In a valley, the gradient
direction is almost perpendicular to the flat axis and the updates oscillate
back and forth in the direction of the short axis, moving very slowly along
the long axis. A widely used technique to accelerate the convergence of
gradient descent is the use of a momentum term (Nesterov, 1983b; Polyak,
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1964) such that the weight update at the current time step depends both
on the current gradient and the weight update at the previous step. The
momentum term helps to average out the oscillations on the short axis while
adding up contributions along the long axis, leading to faster convergence.
The update rule of gradient descent with the momentum term at iteration
i-th:

V(i+1) = βV(i) +∇L(θ(i))
θ(i+1) = θ(i) − ηV(i+1)

(2.17)

where V is the momentum buffer, η is the learning step and β the amount
of momentum applied. Note that with β = 0 the original gradient descent
formulation is recovered.

second-order methods Alternatively, second-order approximations
such as Newton’s method incorporate information about the curvature of
the loss function into the optimization algorithm by rescaling the gradient
with the inverse of the Hessian (Nocedal and Wright, 2006):

θ(i+1) = θ(i) −H−1∇L(θ(i)) (2.18)

However, in order to succeed, Newton’s method requires the Hessian to be
positive definite, namely invertible. When the loss surface is non-convex
in high dimensions such as in NN, it contains many saddle points, and
the application of Newton’s method could result problematic (Dauphin
et al., 2014). Near saddle points, the eigenvalues of the Hessian are not
all positive, and then Newton’s method can cause updates to move in the
wrong direction. This situation can be avoided by regularizing the Hessian,
simply summing a diagonal term. The convergence rate of gradient descent
method, in fact, is heavily influenced by the condition number, the ratio
between the largest and smallest eigenvalues of the Hessian‚ κ = λmax

λmin
which

should be close to one. If the condition number is high, the optimization
problem is ill-conditioned and the convergence rate is slow. One important
issue with second-order methods is that the size of the Hessian grows with
Θ(n2

θ), quadratically with the number of parameters nθ, quickly becoming
problematic for NNs both in terms of space and the inverse time complexity.
To solve this problem, one could rely on diagonal approximations, making
the space complexity linear and the inverse computation trivial, trading
off useful information on how different directions interact with each other.
See (LeCun et al., 1998b) for an earlier review on the application of second-
order methods to the training of NNs, while a comprehensive treatment of
numerical optimization methods can be found in Nocedal and Wright (2006)
and Boyd et al. (2004).

natural gradient Another family of gradient-based optimization tech-
niques takes into account the probabilistic structure of the underlying mani-
fold of the model parameters. Each parameter value θ induces an instance
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of a function fθ that belongs a family parametric models F . Intuitively, two
very different parameters values θ1 and θ2 (in terms of Euclidean distance)
could induce very similar functions fθ1 and fθ2 , or conversely two very
close parameters could induce very different functions. This is because the
Euclidean distance in the parameters space does not necessarily reflect the
actual distances between the induced functions. Rather than moving in the
parameter space, Natural gradient descent (Amari, 1998; Pascanu and Bengio,
2014; Roux et al., 2008) moves directly in the functional manifold induced by
the mapping from θ to fθ by defining a proper distance in the function space
independently by their parametrization. This can be achieved by relying
on the probabilistic interpretation of neural networks, which can be seen
as modeling the conditional probability p(y|x). The distance between two
functions fθ1 and fθ2 can be identified by the KL-divergence between their
corresponding probabilistic interpretations pθ1 and pθ2 . The second-order
term of Taylor’s expansion of the KL-divergence results in the well known
Fisher Information Matrix (FIM) (Ly et al., 2017; Martens, 2020):

Fθ = E
y∼pθ (y|x)
x∼pdata

[
∇θ log pθ(y | x)∇θ log pθ(y | x)T

]
(2.19)

Natural gradient descent corrects the gradient directions with the inverse of
the FIM in place of the Hessian matrix, which ensures to follow the steepest
descent in the Riemannian parameter manifold:

θ(i+1) = θ(i) − ηF−1
θ ∇L

(
θ(i)
)

(2.20)

Similarly to the Hessian matrix, the FIM scales quadratically with nθ which
is often impractical for large networks, requiring efficient approximations
that are much compact and easier to invert (Martens and Grosse, 2015). For
a complete review of the field of Information Geometry we recommend the
readers to check (Amari, 2016; Amari and Nagaoka, 2007).

advanced first-order methods Because of the difficulties of second-
order methods, a variety of successful first-order alternatives have been
proposed and popular optimizers such as AdaGrad (Duchi et al., 2011),
RMSProp (Hinton et al., 2012), Adadelta (Zeiler, 2012) or Adam (Kingma
and Ba, 2015) are often the preferred choices for training NNs. By making
use of momentum terms and automatically adapting the learning rates per
dimension (Schaul et al., 2013), these methods are surprisingly effective when
used in conjunction with tricks that ease the optimization process. Most of
these heuristics apply normalization techniques to center and decorrelate the
input of each layer (Desjardins et al., 2015; Ioffe and Szegedy, 2015; Salimans
and Kingma, 2016), inspired by standard data pre-processing methods. Most
of these methods can be seen as different preconditioning of the gradient
that adapts the geometry of the data to improve the rate of convergence of
gradient descent.
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2.7.4.2 Parameters initialization strategies

The success of iterative algorithms such as gradient descent in finding
optimal solutions generally depends on the initial point of the optimization
process. The initial values of the parameters can determine whether the
algorithm successfully converges or not, and the speed of convergence.
Regularization techniques such as weight decay (Section 2.5), suggest that the
weights should be small enough in order to avoid overfitting, but in general,
having too small weights can severely attenuate signals as they propagate
through a network — activations in the forward pass and gradients in the
backward pass. Modern initialization strategies follows simple statistical
intuitions and heuristics which impose uniform or gaussian prior with
zero mean. Most of the popular initialization techniques are designed to
make sure that all layers have the same activation variance and that the
gradients variance remain constant and close to one over the layers of
the network (Glorot and Bengio, 2010). For instance, Sussillo and Abbott
(2014) showed that keeping constant the logarithm of the norms of the
backpropagated errors is sufficient to train deep networks. The initial scale
of the weights critically depends on the types of activation used in the
networks (He et al., 2015).

An interesting recent line of research studies signal propagation in deep
networks through the lens of statistical physics (Poole et al., 2016; Raghu
et al., 2017; Schoenholz et al., 2017). Pennington et al. (2017), 2018 show that
NNs train well when their input-output Jacobians exhibit dynamical isometry,
namely the property that the distribution of singular values concentrate
close to 1. This condition can be achieved for deep linear networks via
orthogonal weight initialization (Saxe et al., 2014), making training time
independent from the depth of the network. While not as fast as linear
networks, sigmoidal networks with orthogonal initialization have training
times growing as the square root of depth Pennington et al. (2017). Similar
initializations can be obtained for other types of networks as well (Chen
et al., 2018a; Xiao et al., 2018b), making the training of very deep networks
possible.

2.7.4.3 Activation functions

One of the main issues with activation functions such as sigmoid and tanh
is that when they operate in saturating regimes, their gradient is small,
or potentially zero, being detrimental for learning. For this reason, non-
saturating activation functions such as Rectified Linear Units (ReLUs) (Glorot
et al., 2011; Jarrett et al., 2009; Nair and Hinton, 2010), have become very
popular in many applications. This type of activation function, defined as
y = max(0, x), does not saturate for positive inputs, and is less likely to
contribute to the diminishing of the gradient during backpropagation, since
its derivative is the identity for positive values and zero otherwise. Although
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they present a saturating behaviour for negative input, if properly initialized,
these units showed to be very effective for learning very large networks.

However, ReLUs are always non-negative, which causes the mean activa-
tion to be non-zero and act as a bias for the next layer. The more the units
within a layer are correlated, the higher its bias shift. This phenomenon
could introduce undesirable dynamics that could slow down or prevent
training. For the same reason, tanh has been preferred over logistic functions
before the ReLUs took over saturating activations (LeCun et al., 1998b; Le-
Cun et al., 1991). Other piecewise activation functions have been proposed
to improve traditional ReLU by replacing the saturation part, with linear
behaviour at small or learnable slope (He et al., 2015; Maas et al., 2013).

A practical approach for reducing the bias shift is centering the activations
around zero. This method has been proposed in many forms and with
different perspectives on the learning problem (LeCun et al., 1998b; Raiko
et al., 2012; Schraudolph, 1998). More recently, Ioffe and Szegedy (2015)
propose Batch Normalization (BatchNorm or BN) to specifically address the
covariate shift (Shimodaira, 2000) by centering and scaling the activations
of each layer through the statistics of the batch. An affine transformation
is also learned to adjust the amount of normalization that should be taken
into account. BatchNorm accelerates learning reducing the sensitivity to the
initialization of the parameters, and it also regularizes the model reducing
the need for other regularization techniques as Dropout (Srivastava et al.,
2014). However, the exact reasons behind its numerous benefits are still
unclear and a major topic of scientific debate (Benz et al., 2021; Santurkar
et al., 2018; Yang et al., 2019). On the same line, several other normalization
techniques have been proposed to speed up training in different applications
or learning scenarios (Ba et al., 2016; Desjardins et al., 2015; Ioffe and
Szegedy, 2017; Ulyanov et al., 2016; Wu and He, 2018). Exponential Linear
Units (ELU) (Clevert et al., 2016) explicitly addresses the bias shift issue
by designing a function that pushes the mean activations at each layer
closer to zero. Building upon ELUs, Self-normalizing networks (Klambauer
et al., 2017) showed that it is sufficient to adopt scaled exponential linear unit
(SELUs) for the activations propagated through the network to converge to
a fixed point with zero mean and unit variance without requiring explicit
normalization.

2.7.4.4 Exploding and Vanishing Gradients

We have discussed how credit assignment can be efficiently performed
in neural networks via the backpropagation algorithm. We now discuss
two main issues with that affect credit assignment when the depth of the
networks increases, preventing training deep neural networks.
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For simplicity we follow the same analysis of (Pascanu et al., 2013) and
consider the following parametrization of the vanilla RNN:

xt = Wrec f (xt−1) + Winut + b (2.21a)

that is equivalent to the equation in Equation (2.10), but simpler to analyze.
To further simplify the analysis, we include the bias term in Wrec. The loss is
the sum of the contribution each time step t = {1, . . . T}, hence the gradient
with respect to general parameters θ is given by the sum of the gradients:

∂L
∂θ

=
T

∑
t=1

∂Lt

∂θ
(2.22a)

∂Lt

∂θ
=

t

∑
k=1

(
∂Lt

∂xt

∂xt

∂xk

∂xk
∂θ

)
(2.22b)

∂xt

∂xk
=

t

∏
i=k+1

∂xi

∂xi−1
=

t

∏
i=k+1

WT
rec diag( f

′
(xi−1)) (2.22c)

where the diag operator converts a vector into a diagonal matrix, and f
′

computes the derivative of an element-wise function. Any gradient com-
ponent ∂Lt

∂θ is the sum of multiple temporal components, each measuring
how the parameters at step k affect the cost at the successive steps t > k. In
particular, Equation 2.22c transports the error from step t back to step k, com-
puting the temporal Jacobian ∂xi

∂xi−1
at each step for the specific parametrization

in Equation (2.21).
Equation 2.22c takes the form of a product of t− k Jacobian matrices. We

can restrict ourselves to linear functions and analyse its behaviour, as the
sequence length grows, by applying the power iteration method, but for a more
general analysis we can consider nonlinear function where f

′
(x) is bounded

by γ ∈ R and σmax be the largest singular value of Wrec:∥∥∥∥ ∂xi

∂xi−1

∥∥∥∥ ≤ ∥∥∥WT
rec

∥∥∥ ∥∥∥diag( f
′
(xi−1))

∥∥∥ ≤ γσmax (2.23a)∥∥∥∥ ∂xt

∂xk

∥∥∥∥ ≤ t

∏
i=k+1

∥∥∥∥ ∂xi

∂xi−1

∥∥∥∥ ≤ ‖γσmax‖(t−k) (2.23b)

We can observe that, if the product γσmax is less than one,
∥∥∥ ∂xt

∂xk

∥∥∥ becomes
exponentially smaller as the time delay t− k increases. Similarly, the product
of the temporal Jacobians can grow explonentially fast. Knowing that γ < 1
for tanh and γ < 1

4 for the sigmoid function, we can recover a necessary
condition for the gradients to explode, namely σmax > 1 for tanh, and
a tighter version for the sigmoid σmax > 4. The vanishing and exploding
gradients phenomena have been first observed by (Hochreiter, 1991) and later
formalized by other groups (Bengio et al., 1993; 1994; Pascanu et al., 2013)
from a dynamical systems perspective.
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The same analysis can be applied to feedforward neural networks, with
slight changes. From the application of the BPTT algorithm, we know that
unrolling RNN for T time steps is equivalent to have an FNN with T layers,
hence vanishing and exploding gradients also affect the quality of learning
in deep FNNs. The main differences are that

1. FNNs have input only at the first layer, while RNNs have inputs at each
time step.

2. FNNs uses different weights W` for each layer `, while RNNs share the
same weight matrix Wrec at each time step, namely are time-invariant
systems.

We will further stress differences and similarities of recurrent and feedfor-
ward architectures in Chapter 3 by characterizing them from a dynamical
systems perspective.

2.7.5 Strategies for training Deep Neural Networks

The vanishing and exploding gradients issues have been impeding the
training of RNNs capable of modeling long term dependencies of input
sequences, and powerful deep FNNs requiring the development of new
techniques.

2.7.5.1 LSTM

Hochreiter and Schmidhuber (1997b) propose a radically new design — the
Long Short-Term Memory (LSTM) architecture — to alleviate the effect of van-
ishing gradient in RNNs allowing them to modeling long term dependencies
across of hundreds of steps. The key feature of LSTM is the use of an internal
memory cell which can be accessed through additional gates, computational
nodes that control the flow of information into and out of the cell, called
input and output gates. As opposed to vanilla RNNs, this specific design
allows LSTMs to separate their output from the memory cell.

The original version of the memory cell was designed to maintain a con-
stant error flow during backpropagation through a recurrent self-connection
with constant weight equal to one — the Constant Error Carousel (CEC).
Later, Gers et al. (1999) propose to incorporate an extra unit, the forget
gate, whose output is multiplied with the cell’s recurrent connection. This
simple modification enables the memory to reset when needed by producing
forget gate outputs close to zero, which is crucial for successfully solving
many sequential tasks. All components are differentiable and can be effi-
ciently trained with BPTT, to learn how to read, write, and reset the memory
directly from data (Graves and Schmidhuber, 2005).
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it = σ(Wiht−1 + Wixt + bi) (2.24a)
ft = σ(W f ht−1 + W f xt + b f ) (2.24b)

c̃t = tanh(Wcht−1 + Wcxt + bc) (2.24c)
ct = ft � ct−1 + it � c̃t (2.24d)
ot = σ(Woht−1 + Woxt + bo) (2.24e)
ht = ot � tanh(ct) (2.24f)

Since its introduction the vanilla LSTM (see Equation (2.24)) has been the
most commonly used architecture for handling sequential data, but other
variants have been suggested too. Gers et al. (2002) suggest one variant of
LSTMs with peephole connections from the memory cell to the gates, arguing
that in order to learn precise timings, the memory cell needs to influence
the gates directly. Neil et al. (2016) introduce an additional time gate that
allows the unit to update the cell, and the output, at irregularly sampled
time steps. Cho et al. (2014) propose a simplification of the LSTM architecture
called Gated Recurrent Unit (GRU) where the input gate and the forget gate
are coupled into a single update gate. The memory cell and output are also
merged into a single state, removing the output activation. Finally, the
output gate (called reset gate) only gates the recurrent connections to the
block input. For a thorough overview of the different LSTM variants and
their comparison, we recommend the survey by Greff et al. (2016). We also
recommend to check Graves (2008)’s PhD thesis for pioneering applications
of LSTM on sequential tasks.

beyond 1-dimensional temporal series The LSTM mechanism has
been also adapted to model complex dependencies in multidimensional
inputs (Graves et al., 2007; Graves and Schmidhuber, 2009; Stollenga et
al., 2015). Alternatively, convLSTM (Shi et al., 2015) replaces matrix multi-
plications with the convolution operator, preserving the spatial structure
of the inputs to learn spatio-temporal dependencies. Extensions of multi-
dimensional LSTM and convLSTM have being particularly successful in
image and video prediction applications (Byeon et al., 2018; Su et al., 2020).
Visin et al. (2015) propose ReNet, an alternative to conventional CNNs archi-
tectures. ReNet captures spatial correlation across pixels by sweeping images
horizontally and vertically with two bidirectional LSTM cells, showing its
efficacy for structured prediction tasks such as semantic segmentation (Visin
et al., 2016).

In this thesis, we make abundant use of recurrent architectures to learn
representations for visual data, having both temporal and spatial structures.
In Chapter 4 we show how LSTM can be used to represent events-based data
modeling both temporal and spatial dependencies across events. In Chapter 5

we improve the quality of video object segmentation models with convLSTM,
generating more coherent and temporal consistent segmentation masks.
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2.7.5.2 Skip connections

Skip connections modify the flow of information in feedforward networks by
adding direct links from lower to higher layers. Intuitively, such connections
improve credit assignment to lower layers by introducing shorter paths that
bypass many layers to propagate the gradient and assist learning, reducing
signals attenuation. 1

earlier models Skip connections are fundamental building blocks for
the success of modern neural architectures, but their introduction traces
back to some of the earliest work on neural networks.

Lang and Witbrock (1988) is the first presenting the use of shortcut connec-
tions, in a densely connected architecture that provides direct connections
from each layer to all the higher layers. This work was already pointing
toward using skip connections to train deeper networks, although the van-
ishing gradient problem had not been formally identified yet. Fahlman and
Lebiere (1990) proposed the Cascade-Correlation architecture to incremen-
tally increase the depth of a neural network by freezing existing units and
adding new ones. New layers received inputs from all the existing ones,
implicitly implementing skip connections from lower layers. However, being
fixed during training, the lower units did not benefit from the better gradient
flow provided by shortcut connections. Other work (Kalman and Kwasny,
1997; Kalman et al., 1993; Lee and Holt, 1992) used a skip connection directly
from the input to the output of the network to separate the learning of
linear and non-linear components and speed-up the training. In the con-
text of bayesian neural networks, Neal (1995, Chapter 2) suggest that some
pathologies in learning representations can be fixed by making each layer
also depend on the original input. Later, Duvenaud et al. (2014) studied the
use of input-connected networks to improve the training of deep Gaussian
processes.

recent developments Inspired by LSTM, Srivastava et al. (2015a), b
proposed a similar mechanism for regulating the information flow in feed-
forward neural networks. Highway Networks improve signals propagation
with respect to plain networks, by adding a shortcut connection from the
input of the `th layer and its output; two learned gates, the transform gate
T(·; θT) and carry gate C(·; θC) control the contribution of the layer’s output
and the original input, respectively. These two gates are analogous to the
input and forget gates in the LSTM architecture:

x`+1 = C(x; θC) · x` + T(x; θT) · f (x`; θ`) (2.25)

1 This section is based on the literature review presented in Srivastava (2018).
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Concurrently, He et al. (2016) introduced Residual Networks (ResNets), similar
architectures with additive skip or residual connections from the input to the
output of each layer:

x`+1 = x` + f (x`; θ`) , (2.26)

where f (·; θ`) is a nonlinear transformation of the previous layer, either
convolutional or fully-connected. ResNets correspond to Highway Networks
in the special case where both transform and carry gates are set to the
identity. Thanks to their particular design, Highway and Residual Networks
allow having paths along which information can flow across several layers
without attenuation making them easier to optimize even for very large
depths.

Since their introductions, ResNets showed their predominance on im-
age recognition tasks with respect to plain networks, becoming soon the
gold standard for computer vision applications, and guiding the design
and the evolution of many convolutional skip connections-based architec-
tures (Huang et al., 2017; 2016; Larsson et al., 2017; Xie et al., 2017).

long skip connections Long skip connections are often employed to
mitigate the negative effect of the bottleneck in encoder-decoder architectures.
Networks with this structure, in fact, compress and expand the dimen-
sionality of the inputs through several downsampling and upsampling
transformations, causing the degradation of low-level details. Long skip
connections bypass the bottleneck, connecting features extracted from lower
layers of the encoder directly to the decoder recovering details that might
have been lost during the chain of computation. The combination of long
and skip connections has been shown to improve performance on a variety
of computer vision tasks such as (Jégou et al., 2017; Long et al., 2015; Ron-
neberger et al., 2015), medical image segmentation (Drozdzal et al., 2016),
image restoration (Mao et al., 2016) and optical flow estimation (Dosovitskiy
et al., 2015).

theoretical motivation The benefits of skip connections on the train-
ing of very deep architectures have been demonstrated in several fields of
machine learning. However, there are still several unanswered questions
on why adding shortcut connections helps optimization and what kind of
representations is learned by these architectures.

Researchers have studied skip connections from several point of views.
From a biological perspective, skip connections can be motivated by the pres-
ence of similar connections between non-adjacent layers in primates’ visual
cortex (Maunsell and Essen, 1983). Balduzzi et al. (2017) investigate why
usual remedies such as proper initializations and normalizations are not
sufficient for training deep networks showing that they suffer a further prob-
lematic besides vanishing and exploding gradients. The non-smoothness of
rectifier activation functions cause gradient shattering: gradients of deeper lay-
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ers in the network become increasingly uncorrelated. In this scenario, averag-
ing gradients over mini-batches corresponds to integrating over white-noise,
making it impossible to improve the model following specific directions. The
authors show the importance of skip connections to reduce the gradient shat-
tering problem. Li et al. (2018a) explore the structure of the loss landscape of
neural networks and show that skip connection-based architectures present
much smoother shapes suggesting that skip-connections aid gradient-based
optimization simplifying the minimization problem making it more convex.
Orhan and Pitkow (2018) conjectures that the difficulty of training deep
networks is partly due to the singularities caused by the non-identifiability
of the model and that skip connections eliminate these singularities.

In the next chapter, we analyze residual networks from a different per-
spective by observing that their definitions correspond to the forward dis-
cretization of an ordinary differential equation (Haber et al., 2018; Weinan,
2017). Hence, we study the stability of the discretized system and build a
new architecture that can be unrolled to perform iterative computation until
convergence to input-dependent equilibria.



3 N O N - A U TO N O M O U S I N P U T- O U T P U T
S TA B L E N E U R A L N E T W O R K S

This chapter reinterprets Residual Networks from a new dynamical system
perspective, and describes the “Non-Autonomous Input-Output Stable Network”
(NAIS-Net), a novel very deep architecture where each processing block is
derived from a time-invariant non-autonomous system.

NAIS-Net is stable by design since it is built by stacking a cascade of
stable dynamical systems that can be unrolled indefinitely until convergence,
implementing a conditional form of iterative computation Specifically, we
prove that the network is globally asymptotically stable so that for every
initial condition there is exactly one input-dependent equilibrium assuming
tanh units, and incrementally stable for ReLU. We present an efficient
implementation that enforces the stability under the derived conditions for
both fully-connected and convolutional layers. Experimental results show
how NAIS-Net exhibits stability in practice, yielding a significant reduction
in generalization gap compared to ResNets.

3.1 introduction
Deep neural networks are now the state-of-the-art in a variety of challenging
tasks, ranging from object recognition to natural language processing and
graph analysis (Battenberg et al., 2017; Krizhevsky et al., 2012; Monti et al.,
2017; Sutskever et al., 2014; Zilly et al., 2017). With enough layers, they can,
in principle, learn arbitrarily complex abstract representations Bengio et al.,
2013; Rumelhart et al., 1986 through a composition of nonlinear mappings.
Each layer transforms the output from the previous one until the input is
embedded in a latent space where inference can be efficiently made.

Until the advent of Highway (Srivastava et al., 2015a) and Residual (He
et al., 2016) networks, training architectures beyond a certain depth with
gradient descent was limited by the vanishing gradient problem (Bengio et
al., 1994; Hochreiter, 1991). These Very Deep Neural Networks (VDNNs) have
skip connections that provide shortcuts for the gradient to flow back through
hundreds of layers. Building these types of architectures corresponds to
imposing a specific inductive bias on the learned model, where layers incre-
mentally refine features, rather than computing new representations at each
step, implementing an iterative process (Greff et al., 2017; Jastrzebski et al.,
2018).

30
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With this in mind, one could argue that the optimal number of com-
putational steps should depend on the specific sample processed by the
network and that the optimal number of layers or “processing depth” should
not be fixed a priori. In physics, an iterative process that terminates after
an arbitrary number of computational steps is generally formulated as a
dynamical system, which, mathematically, can be most simply described as
an ordinary differential equation (ODE).

Recently, several researchers have started to view neural networks with
additive skip connections from a dynamical systems perspective. Haber and
Ruthotto (Haber and Ruthotto, 2017) analyzed the stability of ResNets by
framing them as an Euler integration of an ODE, and (Lu et al., 2018) showed
how using other numerical integration methods induces various existing net-
work architectures such as PolyNet (Zhang et al., 2017), FractalNet (Larsson
et al., 2017) and RevNet (Gomez et al., 2017).

autonomous vs non-autonomous systems A fundamental problem
with the dynamical systems underlying these architectures is that they are
autonomous: the input pattern sets the initial condition, only directly affecting
the first processing stage. This means that if the system converges, there
is either exactly one fixed-point or exactly one limit cycle (Strogatz, 2015).
Neither case is desirable from a learning perspective because a dynamical
system should have input-dependent convergence properties so that rep-
resentations are useful for learning. One possible approach to achieve this
is to have a non-autonomous system where, at each iteration, the system is
forced by an external input.

time-varying vs time-invariant systems Moreover, because all of
these networks correspond to time-varying dynamical systems by virtue of
having a different set of weights at each processing stage (iteration), they
cannot control pattern-dependent processing depth since all samples must
be fed through all trained layers for proper inference. Jastrzebski et al. (2018)
tried to unroll the last layers of trained residual architectures based on
heuristics and aggressive normalization techniques in order to improve
performance of the model on certain samples, but there are no guarantees
that the model would converge to an input-dependent equilibrium point.
For that, the network must behave as a time-invariant dynamical system
where the weights are shared across process stages, so that the network can
be “unrolled” into as many stages as needed for each pattern by repeatedly
applying the same transformation.

3.1.1 Main contributions

This chapter introduces a novel network architecture, called the “Non-
Autonomous Input-Output Stable Network” (NAIS-Net), that is derived from
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Figure 3.1: NAIS-Net architecture. Each block represents a time-invariant iterative
process as the first layer in the i-th block, xi(1), is unrolled into a pattern-
dependent number, Ki, of processing stages, using weight matrices Ai
and Bi. The skip connections from the input, ui, to all layers in block
i make the process non-autonomous. Blocks can be chained together
(each block modeling a different latent space) by passing final latent
representation, xi(Ki), of block i as the input to block i + 1.

a dynamical system that is both time-invariant (weights are shared) and
non-autonomous.1 NAIS-Net is a general residual architecture where a block
(see Figure 3.1) is the result of the unrolling of a time-invariant system, and
non-autonomy is implemented by having the external input applied to each
of the unrolled processing stages in the block through skip connections.
ResNets are similar to NAIS-Net except that ResNets are time-varying and
only receive the external input at the first layer of the block. With this design,
we can derive sufficient conditions under which the network exhibits well
behaved trajectories for every initial condition. More specifically:

• In Section 3.3, we prove that with tanh activations, NAIS-Net has
exactly one input-dependent equilibrium, while with ReLU activations
lead to incrementally stable trajectories per input pattern. Moreover,
the NAIS-Net architecture allows not only the internal stability of the
system to be analyzed but, more importantly, the input-output stability
— the difference between the representations generated by two different
inputs belonging to a bounded set will also be bounded at each stage of
the unrolling.2 An analysis of the forward pass dynamics of NAIS-Net
layers is carried out in Section 3.5.

• In Section 3.4, we provide an efficient implementation that enforces the
stability conditions for both fully-connected and convolutional layers
in the stochastic optimization setting.

• These implementations are compared experimentally with ResNets
on both CIFAR-10 and CIFAR-100 datasets, in Section 3.6, showing

1 The DenseNet architecture (Huang et al., 2017; Lang and Witbrock, 1988) is non-autonomous,
but time-varying.

2 In the appendix material, we also show that these results hold both for shared and unshared
weights.
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that NAIS-Nets achieve comparable classification accuracy with a
much better generalization gap. NAIS-Nets can also be 10 to 20 times
deeper than the original ResNet without increasing the total number of
network parameters, and, by stacking several stable NAIS-Net blocks,
models that implement pattern-dependent processing depth can be
trained without requiring batch normalization Ioffe and Szegedy, 2015

at each step (except when there is a change in layer dimensionality, to
speed up training).

The next section presents a more formal treatment of the dynamical
systems perspective of neural networks, and a brief overview of work to
date in this area.

3.2 background and related work
Representation learning is about finding a mapping from input patterns to
encodings that disentangle the underlying variational factors of the input set.
With such an encoding, a large portion of typical supervised learning tasks
(e.g. classification and regression) should be solvable using just a simple
model like logistic regression. A key characteristic of such a mapping is its
invariance to input transformations that do not alter these factors for a given
input3.

In particular, random perturbations of the input should in general not
be drastically amplified in the encoding. In the field of control theory, this
property is central to stability analysis, which investigates the properties
of dynamical systems under which they converge to a single steady-state
without exhibiting chaos (Khalil, 2014; Sontag, 1998; Strogatz, 2015).

3.2.1 Residual Networks: a dynamical system perspective

Almost all successfully trained VDNNs (Cho et al., 2014; He et al., 2016;
Hochreiter and Schmidhuber, 1997b; Srivastava et al., 2015a) share the
following core building block:

x(k + 1) = x(k) + f (x(k), θ(k)) , 1 ≤ k ≤ K. (3.1)

That is, in order to compute a vector representation at layer k + 1 (or time
k + 1 for recurrent networks), additively update x(k) with some non-linear
transformation f (·) of x(k) which depends on parameters θ(k). The reason
usual given for why Eq. (3.1) allows VDNNs to be trained is that the explicit
identity connections avoid the vanishing gradient problem.

3 Such invariance conditions can be very powerful inductive biases on their own: For ex-
ample, requiring invariance to time transformations in the input leads to popular RNN
architectures (Tallec and Ollivier, 2018).
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The semantics of the forward path are however still considered unclear.
A recent interpretation is that these feed-forward architectures implement
iterative inference (Greff et al., 2017; Jastrzebski et al., 2018). This view is rein-
forced by observing that Eq. (3.1) is a forward Euler discretization (Ascher
and Petzold, 1998) of the Ordinary Differential Equation (ODE):

ẋ(t) = f (x(t), Θ) (3.2)

in the case of shared weights across layers, θ(k) ≡ Θ for all 1 ≤ k ≤ K. In
fact, it is trivial to show that the forward propagation of Eq. (3.1) can be
rewritten as:

x(k + 1)− x(k)
h

= f (x(k), Θ). (3.3)

The left hand side of the above equation is the finite difference approximation
to the differential operator ∂x with step h that corresponds to the ODE in
Eq. (3.2) for h→ 0.

This connection between dynamical systems and feed-forward architec-
tures was recently also observed by several other authors (Haber et al., 2018;
Weinan, 2017). This point of view leads to a large family of new network
architectures that are induced by various numerical integration methods (Lu
et al., 2018). Moreover, stability problems in both the forward as well the
backward path of VDNNs have been addressed by relying on well-known
analytical approaches for continuous-time ODEs (Chang et al., 2018; Haber
and Ruthotto, 2017). In the present work, we instead address the problem
directly in discrete-time, meaning that our stability result is preserved by
the network implementation. Additionally, viewing deep neural networks as
a discretization of a dynamical system, allows the training process of such
a network to be cast as an optimal control problem in continuous time (Li
et al., 2018b). However, with the exception of Liao and Poggio (2016), none
of this prior research considers time-invariant, non-autonomous systems.

Conceptually, our work shares similarities with approaches that build
network architectures according to iterative algorithms (Gregor and LeCun,
2010; Zheng et al., 2015) and recent ideas investigating pattern-dependent
processing time (Figurnov et al., 2017; Graves, 2016; Veit and Belongie, 2018).
See Section 3.5.2 and Section 3.6.3 for more details.

3.2.2 Related Work on Stability of Neural Networks

In machine learning, stability has long been central to the study of recur-
rent neural networks (RNNs) with respect to the vanishing (Bengio et al.,
1994; Hochreiter, 1991; Pascanu et al., 2013), and exploding (Baldi et al.,
1996; Doya, 1992; Pascanu et al., 2013) gradient problems, leading to the
development of Long Short-Term Memory (Hochreiter and Schmidhuber,
1997b) to alleviate the former. It is well known that having well-behaved
forward propagation is crucial for having gradients that do not explode nor
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vanish during training (Ioffe and Szegedy, 2015; Pascanu et al., 2013), hence
a well-posed learning problem. More recently, general conditions for RNN
stability have been presented (Kanai et al., 2017; Laurent and Brecht, 2017;
Vorontsov et al., 2017; Zilly et al., 2017) based on general insights related to
Matrix Norm analysis. Stability of RNNs can also be achieved through more
well-known approaches such as `1 or `2-norm weights regularization (Pas-
canu et al., 2013), or explicitly regularizing the evolution of the hidden
state trajectory (Krueger and Memisevic, 2015). Classical Input-output sta-
bility (Khalil, 2014) has also been analyzed for simple RNNs (Haschke and
Steil, 2005; Knight, 2008; Singh and Barabanov, 2016; Steil, 1999).

Recently, the stability of deep feed-forward networks was more closely in-
vestigated, mostly due to adversarial attacks (Szegedy et al., 2014) on trained
networks. It turns out that sensitivity to (adversarial) input perturbations
in the inference process can be avoided by ensuring certain conditions on
the spectral norms of the weight matrices (Cisse et al., 2017; Yoshida and
Miyato, 2017). Additionally, special properties of the spectral norm of weight
matrices mitigate instabilities during the training of Generative Adversarial
Networks (Miyato et al., 2018).

3.3 non-autonomous input-output stable nets
(nais-nets)

This section provides stability conditions for both fully-connected and con-
volutional NAIS-Net layers. We formally prove that NAIS-Net provides a
non-trivial input-dependent output for each iteration k as well as in the
asymptotic case (k→ ∞). The following dynamical system:

x(k + 1) = x(k) + h f (x(k), u, θ) , x(0) = 0, (3.4)

is used throughout the chapter, where x ∈ Rn is the latent state, u ∈ Rm is
the network input, and h > 0. For ease of notation, in the remainder of the
chapter the explicit dependence on the parameters, θ, will be omitted.

3.3.1 Fully-Connected NAIS-Net Layer

Our fully-connected layer is defined by

x(k + 1) = x(k) + hσ

(
Ax(k) + Bu + b

)
, (3.5)

where A ∈ Rn×n and B ∈ Rn×m are the state and input transfer matrices,
and b ∈ Rn is a bias. The activation σ ∈ Rn is a vector of (element-wise)
instances of an activation function, denoted as σi with i ∈ {1, . . . , n}. In this
work, we only consider the hyperbolic tangent, tanh, and Rectified Linear
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Units (ReLU) activation functions. Note that by setting B = 0, and the step
h = 1 the original ResNet formulation is obtained.

3.3.2 Convolutional NAIS-Net Layer

The architecture can be easily extended to Convolutional Networks by
replacing the matrix multiplications in Eq. (3.5) with a convolution operator:

X(k + 1) = X(k) + hσ

(
C ∗ X(k) + D ∗U + E

)
. (3.6)

Consider the case of NC channels. The convolutional layer in Eq. (3.6) can
be rewritten, for each latent map c ∈ {1, 2, . . . , NC}, in the equivalent form:

Xc(k + 1) = Xc(k) + hσ

(
NC

∑
i

Cc
i ∗ Xi(k) +

NC

∑
j

Dc
j ∗Uj + Ec

)
, (3.7)

where: Xi(k) ∈ RnX×nX is the layer state matrix for channel i, Uj ∈ RnU×nU is
the layer input data matrix for channel j (where an appropriate zero padding
has been applied) at layer k, Cc

i ∈ RnC×nC is the state convolution filter from
state channel i to state channel c, Dc

j is its equivalent for the input, and Ec is
a bias. The activation, σ, is still applied element-wise. The convolution for X
has a fixed stride s = 1, a filter size nC and a zero padding of p ∈N, such
that nC = 2p + 1. 4

Convolutional layers can be rewritten in the same form as fully connected
layers (see proof of Lemma 1 in the supplementary material). Therefore, the
stability results in the next section will be formulated for the fully-connected
case, but apply to both.

3.3.3 Stability analysis

Here, the stability conditions for NAIS-Nets which were instrumental to
their design are laid out. We are interested in using a cascade of unrolled
NAIS blocks (see Figure 3.1), where each block is described by either Eq. (3.5)
or Eq. (3.6). Since we are dealing with a cascade of dynamical systems, then
stability of the entire network can be enforced by having stable blocks (Khalil,
2014). The state-transfer Jacobian for layer k is defined as:

J(x(k), u) =
∂x(k + 1)

∂x(k)

= I + h
∂σ(∆x(k))

∂∆x(k)
A, = I + hσ

′
(∆x(k))A.

(3.8)

4 If s ≥ 0, then x can be extended with an appropriate number of constant zeros (not
connected).
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where the argument of the activation function, σ, is denoted as ∆x(k). Take
an arbitrarily small scalar σ > 0 and define the set of pairs (x, u) for which
the activations are not saturated as:

P =

{
(x, u) :

∂σi(∆x(k))
∂∆xi(k)

≥ σ, ∀i ∈ [1, 2, . . . , n]
}

. (3.9)

Theorem 1 below proves that the non-autonomuous residual network
produces a bounded output given a bounded, possibly noisy, input, and
that the network state converges to a constant value as the number of layers
tends to infinity, if the following stability condition holds:

Condition 1. For any σ > 0, the Jacobian satisfies:

ρ = sup
(x,u)∈P

ρ(J(x, u)), s.t. ρ < 1, (3.10)

where ρ(·) is the spectral radius.

The steady-states, x, are determined by a continuous function For tanh
activation, the steady states, x, are determined by a continuous function of
u. This means that a small change in u cannot result in a very different
x. For tanh activation, x depends linearly on u, therefore the block needs
to be unrolled for a finite number of iterations, K, for the mapping to be
non-linear. That is not the case for ReLU, which can be unrolled indefinitely
and still provide a piece-wise affine mapping which is locally Lipschitz.

In Theorem 1, the Input-Output (IO) gain function, γ(·), describes the
effect of norm-bounded input perturbations on the network trajectory. This
gain provides insight as to the level of robust invariance of the classification
regions to changes in the input data with respect to the training set. In
particular, as the gain is decreased, the perturbed solution will be closer
to the solution obtained from the training set. This can lead to increased
robustness and generalization with respect to a network that does not statisfy
Condition 1. Note that the IO gain, γ(·), is linear, and hence the block IO
map is Lipschitz even for an infinite unroll length. The IO gain depends
directly on the norm of the state transfer Jacobian, in Eq. (3.10), as indicated
by the term ρ in Theorem 1.5

Theorem 1. (Asymptotic stability for shared weights)

If Condition 1 holds, then NAIS-Net with tanh activations is Asymptotically
Stable with respect to input dependent equilibrium points. More formally:

x(k)→ x ∈ Rn, ∀x(0) ∈ X ⊆ Rn, u ∈ Rm. (3.11)

The trajectory is described by ‖x(k)− x‖ ≤ ρ k‖x(0)− x‖, where ‖ · ‖ is a suitable
matrix norm and ρ is defined in Eq. (3.10).
In particular, with tanh activation:

5 see supplementary material for additional details and all proofs, where the untied case is
also covered.
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1. the steady-state x is independent of the initial state, and it is a linear function
of the input, namely, x = A−1Bu. The network is Globally Asymptotically
Stable with respect to x.

2. the network is Globally Input-Output (robustly) Stable for any additive input
perturbation w ∈ Rm and the trajectory of the system is described by:

‖x(k)− x‖ ≤ ρ k‖x(0)− x‖+ γ(‖w‖), ∀k ≥ 0

with γ(‖w‖) = h
‖B‖

(1− ρ )
‖w‖.

(3.12)

where γ(·) is the input-output gain. Moreover, if ‖w‖ ≤ µ for any µ ≥ 0,
then the following set is robustly positively invariant (x(k) ∈ X , ∀k ≥ 0):

X = {x ∈ Rn : ‖x− x‖ ≤ γ(µ)} . (3.13)

while with ReLU activation:

• The network is Globally incrementally practically Stable (δ-GpS). In other
words, ∀k ≥ 0, given two initial conditions {x(0), x(0)} and the same input
u, we have:

‖x(k)− x(k)‖ ≤ ρ k‖x(0)− x(0)‖+ ζ. (3.14)

The constant factor is ζ = ‖x(0)−‖
(1−ρ )

.

• The network is Globally Input-Output incrementally practically Stable (δ-
IOS). In other words, given {x(0), x(0)} and two respective inputs {u, u}
we have:

‖x(k)− x(k)‖ ≤ ρ k‖x(0)− x(0)‖+ γ(‖u− u‖) + ζ, ∀k ≥ 0

with γ(‖w‖) = h
‖B‖

(1− ρ )
‖w‖.

(3.15)

where γ(·) is the input-output gain as also defined in Eq. (3.12).

Therefore, given u = u + w with ‖w‖ ≤ µ for any µ ≥ 0, and u being the
nominal (or training) input, then the network state delta-converges to:

‖x− x‖ ≤ ‖x(0)− x(0)‖
(1− ρ )

+ γ(µ). (3.16)

3.4 stability constraints implementation
In general, an optimization problem with a spectral radius constraint as in
Eq. (3.10) is hard (Kanai et al., 2017). One possible approach is to relax the
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Algorithm 1 Fully-Connected layer Reprojection

Input: R ∈ Rñ×n, ñ ≤ n, δ = 1− 2ε and ε ∈ (0, 0.5).

if ‖RTR‖F > δ then

R̃←
√

δ R√
‖RTR‖F

else
R̃← R

end if
Output: R̃

constraint to a singular value constraint (Kanai et al., 2017) which is appli-
cable to both fully-connected as well as convolutional layer types (Yoshida
and Miyato, 2017). However, this approach is only applicable if the identity
matrix in the Jacobian (Eq. (3.8)) is scaled by a factor 0 < c < 1 (Kanai et al.,
2017). In this work we instead fulfil the spectral radius constraint directly.

The basic intuition for the presented algorithms is the fact that for a
simple Jacobian of the form I + M, M ∈ Rn×n, Condition 1 is fulfilled, if
M has eigenvalues with real part in (−2, 0) and imaginary part in the unit
circle. In the supplemental material we prove that the following algorithms
fulfill Condition 1 following this intuition. Note that, in the following, the
presented procedures are to be performed for each block of the network.

3.4.1 Fully-connected blocks.

In the fully-connected case, we restrict the matrix A to by symmetric and
negative definite by choosing the following parameterization for them:

A = −RTR− εI, (3.17)

where R ∈ Rn×n is trained, and 0 < ε� 1 is a hyper-parameter. Then, we
propose a bound on the Frobenius norm, ‖RTR‖F. Algorithm 1, performed
during training, implements the following. 6:

Theorem 2. (Fully-connected weight projection)
Given R ∈ Rn×n, the projection R̃ =

√
δ R√
‖RTR‖F

, with δ = 1− 2ε ∈ (0, 1),

ensures that A = −R̃TR̃− εI is such that Condition 1 is satisfied for h ≤ 1 and
therefore Theorem 1 holds.

Note that δ = 2(1− ε) ∈ (0, 2) is also sufficient for stability, however,
the δ from Theorem 2 makes the trajectory free from oscillations (critically
damped), see Figure 3.6. This is further discussed in Appendix.

6 The more relaxed condition δ ∈ (0, 2) is sufficient for Theorem 1 to hold locally (supple-
mentary material).
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Algorithm 2 Convolutional layer Reprojection

Input: δ∈ RNC, C∈ RnX×nX×NC×NC , and 0 < ε < η < 1.

for each feature map c do

δ̃c ← max
(

min
(
δc, 1− η

)
,−1 + η

)
C̃c

icentre
← −1− δ̃c

if ∑j 6=icentre

∣∣∣Cc
j

∣∣∣ > 1− ε− |δ̃c| then

C̃c
j ←

(
1− ε− |δ̃c|

) Cc
j

∑j 6=icentre

∣∣∣Cc
j

∣∣∣
end if

end for
Output: δ̃, C̃

3.4.2 Convolutional blocks

The symmetric parametrization assumed in the fully-connected case can
not be used for a convolutional layer. We will instead make use of the
following result:

Lemma 1. The convolutional layer Eq. (3.6) with zero-padding p ∈N, and filter
size nC = 2p + 1 has a Jacobian of the form Eq. (3.8) with A ∈ Rn2

X NC×n2
X NC . The

diagonal elements of this matrix, namely, An2
Xc+j,n2

Xc+j, 0 ≤ c < NC, 0 ≤ j < n2
X

are the central elements of the (c + 1)-th convolutional filter mapping Xc+1(k), into
Xc+1(k + 1), denoted by Cc

icentre
. The other elements in row n2

Xc + j, 0 ≤ c < NC,
0 ≤ j < n2

X are the remaining filter values mapping to X(c+1)(k + 1).

To fulfill the stability condition, the first step is to set Cc
icentre

= −1− δc,
where δc is trainable parameter satisfying |δc| < 1− η, and 0 < η � 1 is a
hyper-parameter. Then we will suitably bound the ∞-norm of the Jacobian
by constraining the remaining filter elements. The steps are summarized
in Algorithm 2 which is inspired by the Gershgorin Theorem (Horn and
Johnson, 2012). The following result is obtained:

Theorem 3. (Convolutional weight projection)
Algorithm 2 fulfils Condition 1 for the convolutional layer, for h ≤ 1, hence Theo-
rem 1 holds.

Note that the algorithm complexity scales with the number of filters. A
simple design choice for the layer is to set δ = 0, which results in Cc

icentre
being fixed at −1. 7

7 Setting δ = 0 removes the need for hyper-parameter η but does not necessarily reduce
conservativeness as it will further constrain the remaining element of the filter bank. This is
further discussed in the supplementary.
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3.5 forward propagation dynamics
In this section, we compare the behaviour of a fully-connected NAIS-Net
block and its unstable counterpart, non-autonomous ResNet, by analyzing the
dynamics of the forward propagation of the system induced by different
parameter values.

To ease the visualization of the systems’ dynamics, we focus on the scalar
case of the parametrization in Eq. (3.5), when the activation space is 1-
dimensional and A, B, b are scalars that act on scalar-valued state x and
input u — note that they are not bold in this section.

We investigate different values of A that satisfy or violate the stability
conditions, namely ‖I + A‖ < 1, which in this special case translate into
A ∈ (−2, 0). Whenever this condition is violated, we denote the resulting
network as non-autonomous ResNet or, equivalently, unstable NAIS-Net. For
simplicity, we set the input parameter B = 1, and the bias b = 0 for all the
experiments. Note that, in this setting, varying the input is equivalent to
varying the bias.

3.5.1 Fixed number of unroll steps

We consider a fixed number of unroll steps and the last point trajectories
with fixed length K. In this case, a NAIS-Net block produces an input-
output map that is Lipschitz for any K (even infinity) and significantly better
behaved than a standard ResNet, with no need of extra regularisations or
batch normalization.

Non-Autonomous ResNet (Unstable NAIS-Net block)

Figure 3.2 shows examples of pathological cases in which the unstable
non-autonomous ResNet produces unreliable or uninformative input-output
maps. Plots in the top row analyze the case of positive unstable eigenvalues.
The tanh network (top left) presents bifurcations which can make gradients
explode (Pascanu et al., 2013). The slope is nearly infinite around the origin,
and finally, for large inputs, the activation collapses into a flat function equal
to kA, where k is the iteration number. The ReLU network (top right) has an
exponential gain increase per step k, and the gain for k = 100 reaches 1030

(see red box and pointer).
Bottom plots analyze the case of large negative eigenvalues. The tanh acti-

vation (bottom left) produces a map with a limited slope that also presents
irregularities, especially around the origin, that could be problematic during
training. The ReLU activation (bottom right) instead produces an uninfor-
mative map, max(u, 0), which is (locally) independent from the parameter
A and the unroll length K.
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Figure 3.2: Single neuron Non-autonomous ResNet (unstable NAIS-Net block).
Input-output map for different unroll length for tanh (Left) and
ReLU (Right) activations. Pathological cases in which the unstable
non-autonomous ResNet produces unreliable or uninformative input-
output maps for positive unstable eigenvalues (top), and large negative
eigenvalues (bottom).

NAIS-Net block

Figure 3.3 shows the input-output maps produced by stable NAIS-Net with
the reprojection for fully-connected layers proposed in Algorithm 1. Top
and bottom graphs present the case of positive real stable eigenvalues with
different magnitude resulting in trajectories that are critically damped or
oscillation-free.

Figures on the left confirm our theoretical result for tanh networks, first
point of Theorem 1. As a result of the reprojection, the networks are stable
and have monotonic activations (strictly increasing around the origin) that
tend to a straight line as k → ∞. Moreover, the map is Lipschitz, with
Lipschitz constant equal to the steady-state gain presented in Theorem 1,
‖A−1‖ ‖B‖.

Figures on the right present the ReLU case where the maps remain of the
same form, but they change in slope until the theoretical gain ‖A−1‖ ‖B‖ is
reached. This means that one cannot have an unbounded slope or the same
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Figure 3.3: Single neuron NAIS-Net. Input-output map for different unroll
length for tanh (Left) and ReLU (Right) activations. The input-output
maps produced by stable NAIS-Net with the proposed reprojection
for fully-connected architectures. Top and bottom graphs show the
behaviour with positive stable eigenvalues for different magnitude.

map for different unroll length. The parameters also determine the rate of
change of the map as a function of k that is always under control. Finally,
one could make the Lipschitz constant unitary by multiplying the network
output by ‖A‖/‖B‖ once the recursion is terminated. This could be used as
an alternative to batch normalization, and it could be investigated in future
work.

Less Conservative NAIS-Net block

Figure 3.4 shows the maps produced by stable NAIS-Net with eigenvalues
that are outside the region of our proposed reprojection for fully connected
layers but still inside the one for convolutional layers. In particular, the top
and bottom graphs present the case of negative real stable eigenvalues with
different magnitude.

As a result, figures on the left show that tanh networks have monotonic
activations (not strictly in this case) that still tend to a straight line as
expected but present intermediate decaying oscillations as k → ∞. The
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Figure 3.4: Single neuron NAIS-Net with less conservative reprojection. Input-
output map for different unroll length for tanh (Left) and ReLU
(Right) activations. Input-output maps produced by stable NAIS-Net
with eigenvalues that are outside the region of our proposed reprojec-
tion for fully-connected layers but still inside the one for convolutional
layers.

map is still Lipschitz, but the Lipschitz constant is not always equal to the
steady-state gain because of the transient oscillations.

Figures on the right present the ReLU case where the maps remain identi-
cal independently of the parameter A, making the parameter uninformative.
Note that the proposed reprojection for convolutional layers can theoreti-
cally allow for this behaviour causing training instabilities, while the fully
connected version does not. However, experiments trained with Algorithm 2

have shown satisfactory results (see Section 3.6.2).

3.5.2 Pattern-dependent processing depth

We investigate the use at test time of a stopping criterion for the network
unroll, ‖∆x(x, u)‖ ≤ ε, where ε is a hyper-parameter. This defines a pattern-
dependent processing depth where the network results instead in a piecewise
Lipschitz function for any K > 0 and ε > 0. We consider again the case of
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Figure 3.5: Single neuron NAIS-Net with stopping criteria for pattern-
dependent processing depth. Input-output map for different unroll
length for tanh (Left) and ReLU (Right) activations. The input-output
maps produced by stable NAIS-Net with our proposed reprojection for
fully-connected architectures. In particular, the top and bottom graphs
present the case of positive stable eigenvalues with different magnitude.

a 1-dimensional system, where ε is set to 0.95 for illustrative purpose. The
resulting activations are discontinuous, but locally preserve the properties
illustrated in the previous section.

Figure 3.5 shows the input-output maps produced by stable NAIS-Net
with our proposed reprojection for fully-connected architectures when the
stopping criterion is adopted. In particular, the top and bottom graphs
present the case of positive stable eigenvalues with different magnitude.

Figures on the left show that tanh networks are stable, with piece-wise
continuous and locally strictly monotonic activations (strictly increasing
around the origin) that tend to a straight line as k→ ∞. Moreover, the map
is also piece-wise Lipschitz with Lipschitz constant less than the steady-state
gain presented in Theorem 1, ‖A−1‖ ‖B‖.

Figures on the right present the ReLU case where the maps are piece-wise
linear functions with slope that is upper bounded by ‖A−1‖ ‖B‖. This means
that one cannot have an unbounded slope (except for the jumps) or the same
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map for different unroll length. The rate of change of the map changes as a
function of k is also determined by the parameters. The jump magnitude and
the slopes are also dependant on the choice of threshold for the stopping
criteria.

3.6 experiments on image classification
In this section, we present the results of the experiments that were conducted
on image classification tasks comparing NAIS-Net with ResNet, and variants
thereof, using both fully-connected (MNIST, Section 3.6.1) and convolutional
(CIFAR-10/100, Section 3.6.2) architectures to quantitatively assess the per-
formance advantage of having a VDNN where stability is enforced.

3.6.1 Preliminary analysis on MNIST

For the MNIST dataset (LeCun, 1998) a single-block NAIS-Net was compared
with 9 different 30-layer ResNet variants each with a different combination
of the following features: SH (shared weights i.e. time-invariant), NA (non-
autonomous i.e. input skip connections), BN (with Batch Normalization),
Stable (stability enforced by Algorithm 1). For example, ResNet-SH-NA-BN
refers to a 30-layer ResNet that is time-invariant because weights are shared
across all layers (SH), non-autonomous because it has skip connections
from the input to all layers (NA), and uses batch normalization (BN). Since
NAIS-Net is time-invariant, non-autonomous, and input/output stable (i.e.
SH-NA-Stable), the chosen ResNet variants represent ablations of the these
three features. For instance, ResNet-SH-NA is a NAIS-Net without I/O
stability being enforced by the reprojection step described in Algorithm 1,
and ResNet-NA, is a non-stable NAIS-Net that is time-variant, i.e non-
shared-weights, etc. The NAIS-Net was unrolled for K = 30 iterations for all
input patterns. All networks were trained using stochastic gradient descent
with momentum 0.9 and learning rate 0.1, for 150 epochs.

Results

Test accuracy for NAIS-NET was 97.28%, while ResNet-SH-BN was second
best with 96.69%, but without BatchNorm (ResNet-SH) it only achieved
95.86% (averaged over 10 runs).

After training, the behaviour of each network variant was analyzed by
passing the activation, x(i), though the softmax classifier and measuring
the cross-entropy loss. The loss at each iteration describes the trajectory
of each sample in the latent space: the closer the sample to the correct
steady-state the closer the loss to zero (see Figure 3.6). All variants initially
refine their predictions at each iteration since the loss tends to decreases at
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Figure 3.6: Single neuron trajectory and convergence. (Left) Average loss of
NAIS-Net with different residual architectures over the unroll length.
Note that both ResNet-SH-Stable and NAIS-Net satisfy the stability
conditions for convergence, but only NAIS-Net is able to learn, showing
the importance of non-autonomy. Cross-entropy loss vs processing
depth. (Right) Activation of a NAIS-Net single neuron for input sam-
ples from each class on MNIST. Trajectories not only differ with respect
to the actual steady-state but also with respect to the convergence time.

each layer, but at different rates. However, NAIS-Net is the only one that
does so monotonically, not increasing loss as i approaches 30. Figure 3.6
shows how neuron activations in NAIS-Net converge to different steady-
state activations for different input patterns instead of all converging to zero
as is the case with ResNet-SH-Stable, confirming the results of (Haber and
Ruthotto, 2017). Importantly, NAIS-Net is able to learn even with the stability
constraint, showing that non-autonomy is key to obtaining representations
that are stable and good for learning the task. NAIS-Net also allows training
of unbounded processing depth without any feature normalization steps.
Note that BN actually speeds up loss convergence, especially for ResNet-
SH-NA-BN (i.e. unstable NAIS-Net). Adding BN makes the behaviour very
similar to NAIS-Net because BN also implicitly normalizes the Jacobian, but
it does not ensure that its eigenvalues are in the stability region.

3.6.2 Image Classification on CIFAR-10/100

Experiments on image classification were performed on standard image
recognition benchmarks CIFAR-10 and CIFAR-100 (Krizhevsky and Hinton,
2009). These benchmarks are simple enough to allow for multiple runs to test
for statistical significance, yet sufficiently complex to require convolutional
layers.
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CIFAR-10 CIFAR-100
train test train test

ResNet 99.86±0.03 91.72±0.38 97.42 ± 0.06 66.34 ± 0.82

NAIS-Net1 99.37±0.08 91.24±0.10 86.90 ± 1.47 65.00 ± 0.52

NAIS-Net10 99.50±0.02 91.25±0.46 86.91 ± 0.42 66.07 ± 0.24
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Figure 3.7: CIFAR Results. (Left) Classification accuracy on the CIFAR-10 and
CIFAR-100 datasets averaged over 5 runs. Generalization gap on
CIFAR-10. (Right) Dotted curves (training set) are very similar for
the two networks but NAIS-Net has a considerably lower test curve
(solid).

Setup

The following standard architecture was used to compare NAIS-Net with
ResNet8: three sets of 18 residual blocks with 16, 32, and 64 filters, respec-
tively, for a total of 54 stacked blocks. NAIS-Net was tested in two versions:
NAIS-Net1 where each block is unrolled just once, for a total processing
depth of 108, and NAIS-Net10 where each block is unrolled 10 times per
block, for a total processing depth of 540. The initial learning rate of 0.1 was
decreased by a factor of 10 at epochs 150, 250 and 350 and the experiment
were run for 450 epochs. Note that each block in the ResNet of (He et al.,
2015) has two convolutions (plus BatchNorm and ReLU) whereas NAIS-Net
unrolls with a single convolution. Therefore, to make the comparison of the
two architectures as fair as possible by using the same number of parameters,
a single convolution was also used for ResNet.

Results

Table 3.7a compares the performance on the two datasets, averaged over
5 runs. For CIFAR-10, NAIS-Net and ResNet performed similarly, and
unrolling NAIS-Net for more than one iteration had little affect. This was
not the case for CIFAR-100 where NAIS-Net10 improves over NAIS-Net1

by 1%. Moreover, although mean accuracy is slightly lower than ResNet,
the variance is considerably lower. Figure 3.7 shows that NAIS-Net is less
prone to overfitting than a classic ResNet, reducing the generalization gap
by 33%. This is a consequence of the stability constraint which imparts a
degree of robust invariance to input perturbations (see Section 3.3). It is also

8 https://github.com/tensorflow/models/tree/master/official/resnet

https://github.com/tensorflow/models/tree/master/official/resnet
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Figure 3.8: Processing depth for different NAIS-Net blocks during training
(left). The figure shows the number of iterations (y-axis), of 5 different
blocks taken NAIS-Net at various stages of training (x-axis) for the
CIFAR-10 image classification task. Final NAIS-Net depth distribu-
tion for CIFAR-10 classes (right). Depth over the classes is statistically
different. The Kruskal-Wallis one-way ANOVA test, under the null
hypothesis of all depths coming from the same distribution, produced
a p-value of zero. Pair-wise testing resulted in statistically different
depths in 86.7% of cases, with a 95% confidence level.

important to note that NAIS-Net can unroll up to 540 layers, and still train
without any problems.

3.6.3 Pattern-Dependent Processing Depth

For simplicity, the number of unrolling steps per block in the previous ex-
periments was fixed. A more general and potentially more powerful setup is
to have the processing depth adapt automatically. Since NAIS-Net blocks are
guaranteed to converge to a pattern-dependent steady-state after an indeter-
minate number of iterations, processing depth can be controlled dynamically
by terminating the unrolling process whenever the distance between a layer
representation, x(i), and that of the immediately previous layer, x(i − 1),
drops below a specified threshold. With this mechanism, NAIS-Net can
determine the processing depth for each input pattern. Intuitively, one could
speculate that similar input patterns would require similar processing depth
in order to be mapped to the same region in latent space. To explore this
hypothesis, NAIS-Net was trained on CIFAR-10 with an unrolling threshold
of ε = 10−4. At test time the network was unrolled using the same threshold.
Figure 3.8 (left) shows the number of iterations required over the course of
training to cross the depth threshold, ε, for five selected network blocks. As
training progresses, depth increases almost monotonically at different rates
per block, until becoming relatively stable. Figure 3.8 (right) shows a violin
plot of the final network depth for each CIFAR-10 class. To highlight any sta-
tistical differences, the null hypothesis that the network depth being drawn
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from the same distribution for all classes was tested first. One-way ANOVA
test (Kruskal and Wallis, 1952) was performed over all the classes resulting
in a p-value of zero, thus fully rejecting the null hypothesis. The same test
was performed on each pair of classes: the 86.7% of depth distributions is
statistically different with 95% confidence.

Figure 3.9 shows selected images from four different classes organized
according to the final network depth used to classify them after training.
The qualitative differences seen from low to high depth suggests that NAIS-
Net is using processing depth as an additional degree of freedom so that,
for a given training run, the network learns to use models of different
complexity (depth) for different types of inputs within each class. To be
clear, the hypothesis is not that depth correlates to some notion of input
complexity where the same images are always classified at the same depth
across runs.

3.7 conclusions
We presented NAIS-Net, a non-autonomous residual architecture that can
be unrolled until the latent space representation converges to a stable input-
dependent state. This is achieved thanks to stability and non-autonomy
properties. We derived stability conditions for the model and proposed two
efficient reprojection algorithms, both for fully-connected and convolutional
layers, to enforce the network parameters to stay within the set of feasible
solutions during training. NAIS-Net achieves asymptotic stability and, as
consequence of that, input-output stability. Stability makes the model more
robust and we observe a reduction of the generalization gap by quite some
margin, without negatively impacting performance.

We believe that cross-breeding machine learning and control theory will
open up many new interesting avenues for research, and that more robust
and stable variants of commonly used neural networks, both feed-forward
and recurrent, will be possible.
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Figure 3.9: CIFAR-10 image samples with corresponding NAIS-Net depth. Qual-
itative differences induce different final depths, indicating that NAIS-
Net adapts processing systematically according characteristics of the
data. For example, “frog” images with textured background are pro-
cessed with fewer iterations than those with plain background. Similarly,

“ship” and “airplane” images having a predominantly blue color are pro-
cessed with lower depth than those that are grey/white, and “bird”
images are grouped roughly according to bird size with larger species
such as ostriches and turkeys being classified with greater processing
depth.



4 L E A R N I N G R E P R E S E N TAT I O N S F O R
A S Y N C H R O N O U S E V E N T- B A S E D DATA

Dynamic Vision Sensors (DVSs), also called Event Cameras, are bio-inspired
sensors that differ from conventional frame-based devices in the way they
encode the scene. By capturing per-pixel brightness changes, event cam-
eras output a stream of events that encode the time, location, and sign of
the brightness change. Event cameras offer many advantages over tradi-
tional cameras, making them particularly suitable for challenging vision and
robotics applications that require low-latency, high speed, and high dynamic
range. However, to truly unlock their potential, novel machine learning
methods need to be developed. For instance, sparse and asynchronous
events need to be integrated into a frame or event-surface before applying
well-established computer vision algorithms. This is usually attained by
using ad-hoc heuristics.

In this chapter, we focus on learning incremental representations for
asynchronous streams of data coming from event cameras. We propose a
novel mechanism, Matrix-LSTM, to produce task-dependent event-surfaces
through a grid of Long Short-Term Memory (LSTM) cells. We show that
Matrix-LSTM can learn an integration process of sparse and asynchronous
events, building a two-dimensional representation incrementally, regardless
of the task and the objective function to optimize. Compared to existing
reconstruction approaches, our learned event-surface shows good flexibil-
ity and expressiveness on optical flow estimation on the MVSEC bench-
mark Zhu et al., 2018a, and it improves the state-of-the-art of event-based
object classification on the N-Cars dataset (Sironi et al., 2018).

4.1 introduction
Event-based cameras, such as dynamic vision sensors (DVSs) (Berner et al.,
2013; Lichtsteiner et al., 2008; Posch et al., 2014; Serrano Gotarredona and
Linares Barranco, 2013), are bio-inspired devices that attempt to emulate the
efficient data-driven communication mechanisms of the brain.

Unlike conventional frame-based Active Pixel Sensors (APS) (Fossum,
1997), which capture the scene at a predefined and constant frame-rate,
event-cameras work in a fundamentally different way. These devices are
asynchronous sensors which capture the brightness levels based on the scene
dynamics. This is possible because they measure relative brightness changes,

52
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called “events”, independently for every pixel, rather than measuring the
absolute brightness of the entire scene based on a fixed clock. Thus, an event
camera outputs a sequence of “events” at a variable rate, where each event
represents the change of the log intensity of a specific pixel at a particular
time instant.

In practice, each pixel actively monitors for a change of sufficient mag-
nitude from the previous value of brightness. When the change exceeds a
certain threshold, the “smart” pixel updates its value, and the camera sends
the encoding of the event, which contains its x, y location, the time t, and a
single bit of information about the polarity p of the change — 1 if brightness
increases and 0 if it decreases.

4.1.1 Advantages of event cameras

The way event cameras monitor brightness changes results in many potential
advantages over conventional acquisition devices.

• High temporal resolution and low latency: thanks to the combination
of digital and analog hardware, events are detected and saved with
a microsecond resolution allowing the cameras to capture very fast
motions without suffering from motion blur, a typical downside of
frame-based devices. Moreover, since each pixel works independently,
and there is no global exposure time, event cameras have minimal
latency from micro to milliseconds. As soon as the change is detected,
it is transmitted.

• High Dynamic Range (HDR): since the photoreceptors of the pixels
operate in logarithmic scale and each pixel is independent and does
not need to wait for a global shutter, event cameras have a very high
dynamic range (> 120dB), surpassing by a lot the 60dB of high-quality
frame-based cameras.

• Low power: by transmitting only brightness changes, event cameras
remove redundant data and reduce power consumption. Most cameras
use about 10mW, but some prototypes achieve 10µW or less.

All these characteristics are key features in challenging scenarios involving
fast movements (e.g., drones or moving cars) and abrupt brightness changes
(e.g., when exiting a dark tunnel in a car). They can naturally handle scenes
with both very bright and very dark regions, and they also accurately
describe the trajectory of moving objects, which enables fast response times,
precise motion estimation, and better occlusions handling.
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4.1.2 Challenges with event-based data

Event cameras pose a paradigm shift in the way visual information is
acquired, requiring to specifically design novel algorithms and hardware
architectures to exploit their advantages and leverage their potential in
complex tasks. As an example, event-cameras only provide a timed sequence
of changes that is not directly compatible with computer vision systems
which typically work on frames. In particular, the stream of data produced
by event cameras is asynchronous in time and sparse in space, whereas images
are synchronous and dense.

Since every single event is asynchronous, and it only carries a binary infor-
mation (the occurrence of a change in a specific position and time instant),
mechanisms able to effectively encode the precise timing information of
events are key components of effective event-based vision systems, especially
in data-driven pipelines.

Driven by the great success of frame-based deep learning architectures,
that learn representations directly from standard APS signals, research in
event-based processing is now focusing on how to effectively aggregate
event information in grid-based representations which can be directly used,
for instance, by convolutional deep learning models. Nevertheless, finding
the best mechanism to extract information from event streams is not trivial,
being representations usually task-specific.

Multiple solutions have indeed emerged during the past few years, mostly
employing hand-crafted mechanisms to accumulate events. Examples of
such representations are mechanisms relying on exponential (Cohen, 2016;
Lagorce et al., 2016; Sironi et al., 2018) and linear (Cannici et al., 2019a;
Cohen, 2016) decays, “event-surfaces” storing the timestamp of the last
received event in each pixel and extensions of such mechanism making use
of memory cells (Sironi et al., 2018) and voxel-grids (Rebecq et al., 2019;
Zhu et al., 2018b). Only very recently deep learning techniques have been
applied to learn such surfaces in a data-driven manner (Gehrig et al., 2019a).

4.1.3 Main contribution

In this chapter, we focus on the problem of learning representations for
computer vision tasks involving event-based data, and propose a mechanism
to efficiently aggregate events. We apply a Long Short-Term Memory (LSTM)
network (Hochreiter and Schmidhuber, 1997b) as a convolutional filter
over the 2D stream of events to accumulate pixel information through
time and build 2D event representations. The reconstruction mechanism
is end-to-end differentiable, meaning that it can be jointly trained with
state-of-the-art frame-based architectures to learn event-surfaces specifically
tailored for the task at hand. Most importantly, the mechanism specifically
focuses on preserving sparsity during computation without densifying the
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events during the intermediate feature extraction phase that is otherwise
necessary when applying standard computer vision approaches such as
ConvLSTM (Shi et al., 2015).

We show that replacing hand-crafted event-surfaces with our trainable
layer in state-of-the-art architectures improves their performance substan-
tially without requiring particular effort in hyper-parameter tuning, enabling
researchers to exploit event information effectively. The layer is a powerful
drop-in replacement for hand-crafted features, enabling researchers to ex-
ploit event information effectively and improve the performance of existing
architectures with minor modifications. The contributions of this chapter are
summarized as follows:

• We propose Matrix-LSTM, a task-independent mechanism to extract
grid-like event representations from asynchronous streams of events.
The framework is end-to-end differentiable, it can be used as input
of any existing frame-based state-of-the-art architecture and jointly
trained to extract the best representation from the events.

• Replacing input representations with a Matrix-LSTM layer in existing
architectures, we show that it improves the state-of-the-art on event-
based object classification on N-CARS (Sironi et al., 2018) by 3.3%
and performs better than hand-crafted features on N-Caltech101 (Or-
chard et al., 2015a). Finally, it improves optical flow estimation on
the MVSEC benchmark (Zhu et al., 2018a) up to 30.76% over hand-
crafted features (Zhu et al., 2018a) and up to 23.07% over end-to-end
differentiable ones (Gehrig et al., 2019a).

• We developed custom CUDA kernels, both in PyTorch (Steiner et al.,
2019) and TensorFlow (Abadi et al., 2016), to efficiently aggregate
events by position and perform a convolution-like operation on the
stream of events using an LSTM as a convolutional filter 1.

4.2 event representations
One of the key features underlying modern computer vision algorithms is
their ability to aggregate elementary visual information to build complex
visual features. To this end, convolutional neural networks (CNNs) are by
far the most widespread method in frame-based architectures for image
classification (He et al., 2016; Krizhevsky et al., 2012; Szegedy et al., 2016),
object detection (He et al., 2017; Liu et al., 2016; Redmon et al., 2016),
semantic segmentation (Chen et al., 2017; Long et al., 2015; Yu and Koltun,
2016), and many others. Their great success resides on their end-to-end

1 Code available at https://marcocannici.github.io/matrixlstm

https://marcocannici.github.io/matrixlstm
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differentiable structure that allows these architectures to learn powerful
visual representations for the task to be solved.

Event cameras provide outstanding advantages over ordinary devices in
terms of time resolution and dynamic range. However, their potential is still
unlocked, mainly due to the difficulties of building good representations
from a sparser, asynchronous and much more rough source of information
compared to frame-based data. In this section, we give a brief overview
of related works, focusing on representations for event-based data and
highlighting the differences and similarities with our work. We refer the
reader to (Gallego et al., 2020) for a thorough overview.

spike-based representations Initially, neural systems designed to
perform spike-based computation, such as Spiking Neural Networks (SNNs)
(Maass, 1997), have been applied to event-based processing in several tasks,
e.g., edge detection (Meftah et al., 2010; Wu et al., 2007), object classi-
fication (Diehl et al., 2015; Lee et al., 2016) and hand-gestures recogni-
tion (Botzheim et al., 2012). However, their non-differentiability and the
lack of a well established supervised training procedure have limited the
spreading of SNNs based architectures. Recent works (Rueckauer et al., 2017)
tried to overcome these limitations by first training a frame-based conven-
tional neural network, and then convert its weights into SNNs parameters,
managing to deal with complex structures such as GoogLeNet Inception-
V3 (Szegedy et al., 2016). Inspired by the event integration mechanism in
SNNs, simple but effective, non-parametric leaky integration procedures
have been proposed in recent work (Cannici et al., 2019a; b; Cohen, 2016),
where the reconstructed frame is increased of a fixed quantity whenever an
event occurs in the position corresponding to the event address and linearly
decayed otherwise.

hand-crafted representations Several hand-crafted event represen-
tations have been proposed over the years, ranging from biologically in-
spired, such as those used in Spiking Neural Networks (Maass, 1997),
to more structured ones. Recently, the concept of time-surface was intro-
duced (Lagorce et al., 2016; Maqueda et al., 2018), in which 2D surfaces
are obtained by keeping track of the timestamp of the last event occurred
in each location and by associating each event with features computed ap-
plying exponential kernels on the surface. An extension of these methods,
called HATS (Sironi et al., 2018), employs memory cells that retain temporal
information from past events. Instead of building the surface using just the
last event, too sensitive to noise, HATS uses a fixed-length memory. His-
tograms are then extracted from the surface and a SVM classifier is finally
used for prediction. The use of a memory to compute the event-surface
closely relates HATS with the solution presented in this chapter. Crucially,
the accumulation procedure employed in HATS is hand-crafted, while our
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work is end-to-end trainable thanks to a grid of LSTM cells (Hochreiter and
Schmidhuber, 1997b), which enable to learn a better accumulation strategy
directly from data.

Several hand-crafted event representations have been proposed over the
years, ranging from biologically inspired, such as those used in Spiking
Neural Networks (Maass, 1997), to more structured ones. The concept of
time-surface was recently introduced in Lagorce et al. (2016) and Maqueda
et al. (2018), in which 2D surfaces are obtained by keeping track of the
timestamp of the last event occurred in each location and by associating each
event with features computed applying exponential kernels on the surface.
An extension of these methods, called HATS (Sironi et al., 2018), employs
memory cells that retain temporal information from past events. Instead of
building the surface using just the last event, too sensitive to noise, HATS
uses a fixed-length memory. Histograms are then extracted from the surface,
and an SVM classifier is finally used for prediction. The use of memory to
compute the event-surface closely relates HATS with the solution presented
in this chapter. Crucially, the accumulation procedure employed in HATS
is hand-crafted, while our work is end-to-end trainable thanks to a grid of
LSTM cells (Hochreiter and Schmidhuber, 1997b), which enable to learn a
better accumulation strategy directly from data. This allows the memory to
potentially handle an infinite number of events, but more importantly to
learn a better accumulation strategy directly from data.

In (Zhu et al., 2018b), the authors propose the EV-FlowNet network for
optical flow estimation together with a new time-surface variant. Events of
different polarities are kept separate to build a four-channel grid containing
the number of events that occurred in each location besides temporal infor-
mation. A similar representation has also been used in (Ye et al., 2018). To
improve the temporal resolution of such representations, Zhu et al. (2019a)
suggests discretizing time into consecutive bins and accumulating events
into a voxel-grid through a linearly weighted accumulation similar to bi-
linear interpolation. A similar time discretization has also been used in
Events-to-Video (Rebecq et al., 2019), where the event representation is
used within a recurrent-convolutional architecture to produce realistic video
reconstructions of event sequences. Despite being slower, the quality of
reconstructed frames closely resembles actual gray-scale frames, allowing
the method to take full advantage of transferring feature representations
trained on natural images.

end-to-end representations Most closely related to the current work,
Gehrig et al. (2019a) learns a dense representation end-to-end directly from
raw events. A multi-layer perceptron (MLP) is used to implement a trilin-
ear filter that produces a voxel-grid of temporal features. The event time
information of each event is encoded using the MLP network. The values
obtained from events occurring in the same spatial location are summed
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up to build the final feature. A look-up table is then used, after training, to
speed-up the procedure. Events are processed independently as elements of
a set, disregarding their sequentiality and preventing the network from mod-
ulating the information based on previous events. Instead, by leveraging the
memory mechanism of LSTM cells, our method can integrate information
conditioned on the current state and decide how much each event is relevant
to perform the task and how much information to retain from past events.

A recent trend in event-based processing is studying mechanisms that
do not require to construct intermediate explicit dense representations
to perform the task at hand (Bi et al., 2019; Sekikawa et al., 2019; Wang
et al., 2019). Among these, Neil et al. (2016) uses a variant of the LSTM
network, called PhasedLSTM, to learn the precise timings of events. While
it integrates the events sequentially as in our work, PhasedLSTM employs
a single cell on the entire stream of events and can be used only on very
simple tasks (Cannici et al., 2019b). Indeed, the model does not maintain the
spatial input structure and condenses the 2D stream of events into a single
feature vector, preventing the network from being used as input to standard
CNNs. In contrast, in this chapter, we use the LSTM as a convolutional filter
obtaining a translation-equivariant module that integrates local temporal
features independently while retaining spatial structures. Finally, although
it has never been adopted with event-based cameras, we also mention here
the ConvLSTM (Shi et al., 2015) network, a convolutional variant of the
LSTM that has previously been applied on several end-to-end prediction
tasks. Despite its similarity with our method, since both implement the
notion of convolution to LSTM cells, ConvLSTM is not straightforward to
apply to sparse event-based streams and requires the input to be densified
into frames before processing. This involves building very sparse frames of
simultaneous events, mostly filled with padding, or dense frames containing
uncorrelated events. Our formulation, instead, preserves sparsity during
computation and does not require events to be densified, even when large
receptive fields are considered.

4.3 method
Event-based cameras are vision sensors composed of pixels able to work
independently. Each pixel has its own exposure time and it is free to fire
independently by producing an event as soon as it detects a significant
change in brightness. Unlike conventional devices, no rolling shutter is used,
instead, an asynchronous stream of events is generated describing what has
changed in the scene. Each event ei is a tuple ei = (xi, yi, ti, pi) specifying
the time ti, the location (x, y)i (within a H ×W space) and the polarity
pi ∈ {−1, 1} of the change (brightness increase or decrease). Therefore,
given a time interval τ (i.e., the sample length), the set of events produced
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Figure 4.1: Overview of Matrix-LSTM (figure adapted from (Neil et al., 2016)).
Events in each pixel are first associated to a set of features f (x,y)

i , and

then processed by the LSTM. The last output, s(x,y)
T , is finally used to

construct SE . GroupByPixel is shown here on a single sample (N = 1)
highlighting a 2× 2 pixel region. Colors refer to pixel locations while
intensity indicates time. For clarity, the features dimension is not shown
in the figure

by the camera can be described as a sequence E = {(xi, yi, ti, pi) | ti ∈ τ},
ordered by the event timestamp. In principle, multiple events could be
generated at the same timestamp. However, the grid representation of the
events at a fixed timestamp t is likely to be very sparse, hence, an integrating
procedure is necessary to reconstruct a dense representation SE before being
processed by conventional frame-based algorithms.

Note that, in this work, we do not aim to reconstruct a frame that re-
sembles the actual scene, such as a grey-scale or RGB image (Rebecq et al.,
2019; Scheerlinck et al., 2019), but instead to extract task-aware features
regardless of their appearance. In the following, “surface”, “reconstruction”
and “representation” are used with this meaning.

4.3.1 Matrix-LSTM

Analogously to Gehrig et al. (2019a), our goal is to learn end-to-end a fully
parametric mappingM : E → SE ∈ RH×W×C, between the event sequence
and the corresponding dense representation, providing the best features for
the task to optimize.

In this work, we propose to implementM as an H ×W matrix of LSTM
cells (Hochreiter and Schmidhuber, 1997b) (see Figure 4.1). Let us define
the ordered sequence of events E (x,y) produced by the pixel (x, y) during
interval τ as:

E (x,y) = {(xi, yi, ti, pi) | ti ∈ τ, xi = x, yi = y} ⊂ E (4.1)

and its length as T(x,y) = |E (x,y)|, which may potentially be different for each
location (x, y). A set of raw features f (x,y)

i ∈ RF is first computed for each
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event occurring at location (x, y), typically the polarity and one or multiple
temporal features (more details on the types of features can be found
in Section 4.5.1). At each location (x, y), an LSTM(x,y) cell then processes
these features asynchronously, keeping track of the current integration state
and condensing all events into a single output vector s(x,y) ∈ RC.

In particular, at each time t, the LSTM(x,y) cell produces an intermediate
representation s(x,y)

t . Once all the events are processed, the last output of
the LSTM cell compresses the dynamics of the entire sequence E (x,y) into a
fixed-length vector s(x,y)

T that can be used as pixel feature (here we dropped
the superscript (x,y) from T for readability). The final surface SE is finally
built by collecting all LSTMs final outputs s(x,y)

T into a dense tensor of shape
H ×W × C. Since event-camera pixels produce an output only if a change
is detected, a fixed all-zeros output is used where the set of events E (x,y) is
empty.

temporal bins Taking inspiration from previous methods (Gehrig et
al., 2019a; Rebecq et al., 2019; Zhu et al., 2019a) that discretize time into
temporal bins, we also propose a variant of Matrix-LSTM that operates
on successive time windows. Given a fixed number of bins B, the original
event sequence is split into B consecutive windows Eτ1 , Eτ2 , ..., EτB . Each
sequence is processed independently, i.e., the output of each LSTM at the
end of each interval is used to construct a surface SEb and the LSTMs state
is re-initialized before the next sub-sequence starts. This gives rise of B
different reconstructions SEb that are concatenated to form the final surface

SE ∈ RH×W×B·C. In this formulation, the LSTM input features f (x,y)
i usually

contain both global temporal features (i.e., with respect to the original
uncut sequence) and relative features (i.e., the event position in the sub-
sequence). Although LSTMs should be able to retain memory over very
long periods, we found that discretizing time into intervals helps the Matrix-
LSTM layer in maintaining event information, especially in tasks requiring
precise time information such as optical flow estimation (see Section 4.5.2).
A self-attention module (Hu et al., 2018a) is then optionally applied on the
reconstructed surface to correlate intervals.

parameters sharing Inspired by the convolution operation defined on
images, we designed Matrix-LSTM to enjoy translation equivariance. This
is implemented by sharing the parameters across all the LSTM cells, as in
a convolutional kernel. Events in each location are processed sequentially
using the LSTM memory to accumulate values and perform conditioned
integration. Taking advantage of the LSTM gating mechanism, the network
can indeed learn the best integration strategy given the current state, i.e.,
deciding each time how to encode the current event based on all the previous
history (e.g., using the timing information to dynamically adapt to different
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event rates). Sharing parameters not only drastically reduces the number
of parameters in the network, but it also allows us to transfer a learned
transformation to higher or lower resolutions as in fully-convolutional net-
works (Long et al., 2015).

We highlight that such an interpretation of the Matrix-LSTM functioning
also fits the framework proposed in Gehrig et al. (2019a), in which popular
event densification mechanisms are rephrased as kernel convolutions on the
event field, i.e., a discretized four-dimensional manifold spanning x and y,
and the time and polarity dimensions.

We finally report that this formulation is equivalent to a 1× 1 ConvL-
STM (Shi et al., 2015) applied on a dense tensor where events are stacked in
pixel locations by arrival order. However, we show that our formulation is
much more efficient in terms of space and time performance on sparse event
sequences (see Section 4.6). Moreover, in the next section, an extension to
larger receptive fields with better accuracy performance on asynchronous
event data compared to ConvLSTM, is also proposed.

receptive field size As in a conventional convolution operation, Matrix-
LSTM can be convolved on the input space using different strides and kernel
dimensions. In particular, given a receptive field of size KH × KW , each
LSTM cell processes a local neighborhood of asynchronous events:

E (x,y) = {(xi, yi, ti, pi) | ti ∈ τ, |x− xi| < KW − 1, |y− yi| < KH − 1} (4.2)

Events features are computed as in the original formulation, however, an
additional coordinate feature (px, py) specifies the relative position of each
event within the receptive field. Coordinate features are range-normalized
in such a way that an event occurring in the top-left pixel of the receptive
field has feature (0, 0), whereas one occurring in the bottom-right position
has features (1, 1). Events belonging to multiple receptive fields (e.g., when
the LSTM is convolved with a stride 1× 1 and receptive field greater then
1× 1) are processed multiple times, independently.

4.4 implementation
The convolution-like operation described in the previous section can be
efficiently implemented by means of two carefully designed event group-
ing operations. Rather than replicating the LSTM unit multiple times on
each spatial location, a single recurrent unit is applied over different E (x,y)

sequences in parallel. For each location, the LSTM cell has to process an
ordered sequence of events, from the one having the smallest ti to the last
in the sequence. This requires a reshape operation, i.e., groupByPixel, that
splits events based on their pixel location maintaining the events relative
ordering within each sub-sequence. A similar procedure, i.e., groupByTime,
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Figure 4.2: An example of the groupByPixel operation on a batch of N = 2 samples
and a 2× 2 pixel resolution. Different colors refer to different pixel loca-
tions while intensity indicates time. For clarity, the features dimension
is not shown in the figure.

is employed to efficiently split events into consecutive temporal windows
without making use of expensive masking operations. In the following we
give a detailed overview of the two reshape operators. Note that these oper-
ations are not specific to Matrix-LSTM, since grouping events by pixel index
is a common operation in event-based processing, and could indeed benefit
other implementations making use of GPUs.

4.4.1 GroupByPixel

This operation translates from event-sequences to pixel-sequences. Let X
be a tensor of shape N × Tmax × F, representing the features f (x,y)

n,i of a
batch of N samples, where Tmax is the length of the longest sequence in the
batch. We define the groupByPixel mapping on X as an order-aware reshape
operation that rearranges the events into a tensor of pixel-sequences of shape
P× T(x,y)

max × F where T(x,y)
max is the length of the longest pixel sequence E (x,y)

n
and P is the number of active pixels (i.e., having at least one event) in the
batch, which equals N · H ·W only in the worst case. Pixel-sequences shorter
than T(x,y)

max are padded with zero events to be processed in parallel.
The tensor thus obtained is then processed by the LSTM cell that treats

samples in the first dimension independently, effectively implementing
parameter sharing and applying the transformation in parallel over all the
pixels. The LSTM output tensor, which has the same shape of the input
one, is then sampled by taking the output corresponding to the last event
in each pixel-sequence E (x,y)

n , ignoring values computed on padded values,
and the obtained values are then used to populate the dense representation.
To improve efficiency, for each pixel-sequence E (x,y)

n , groupByPixel keeps also
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track of the original spatial position (x, y), the index of the sample inside
the batch and the length of the pixel-sequence T(x,y)

n , namely the index of
the last event before padding. Given this set of indexes, the densification
step can be performed as a simple slicing operation. See Figure 4.2 for visual
clues. groupByPixel is implemented as a custom CUDA kernel that processes
each sample in parallel and places each event feature in the output tensor
maintaining the original temporal order.

4.4.2 GroupByTime

The Matrix-LSTM variant that operates on temporal bins performs a similar
pre-processing step. Each sample in the batch is divided into a fixed set
of intervals. The groupByTime cuda kernel pre-processes the input events
generating a N ∗ B× Tb

max × F tensor where the B bins are grouped in the
first dimension and taking care of properly padding intervals (Tb

max is the
length of the longest bin in the batch). The Matrix-LSTM mechanism is
then applied as usual and the resulting N ∗ B× H ×W × C tensor is finally
reshaped into a N × H ×W × B ∗ C event-surface.

4.5 evaluation
We test the proposed mechanism on two different tasks: object classification
(see Section 4.5.1) and optical flow estimation (see Section 4.5.2), where
the network is required to extract useful temporal features. We evaluated
the goodness of Matrix-LSTM features indirectly by taking a state-of-the-
art architecture as a reference and assess the proposed method in terms
of the relative gain in performance obtained by replacing the network
representation with a Matrix-LSTM.

4.5.1 Object classification

We evaluated the model on the classification task using two publicly avail-
able event-based collections, namely the N-Cars (Sironi et al., 2018) and the
N-Caltech101 (Orchard et al., 2015a) datasets, which represent to date the
most complex benchmarks for event-based classification. N-Cars is a collec-
tion of urban scene recordings (lasting 100ms each) captured with a DVS
sensor and showing two object categories: cars and urban background. The
dataset is already split into 7, 940 car and 7, 482 background training sam-
ples, and 4, 396 car and 4, 211 background testing samples. The N-Caltech101

collection is an event-based conversion of the popular Caltech-101 (Li Fei-Fei
et al., 2006) dataset obtained by moving an event-based camera in front of
a still monitor showing one of the original RGB images. Like the original
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Table 4.1: Results on N-Cars: (a) ResNet18-Ev2Vid, variable time encoding, and
normalization; (b) ResNet18-EST, variable time encoding and number of
bins

ResNet
Norm

ts absolute ts relative delay relative

X 95.22± 0.41% 94.77± 1.01% 95.40± 0.59%
95.75± 0.27% 95.32± 0.85% 95.80± 0.53%

(a)

1 bin 2 bins 9 bins

delay
glob+loc - 92.68± 1.23% 92.32± 1.02%

local 92.64± 1.21% 92.35± 0.83% 92.67± 0.90%

ts
ts glob+loc - 93.46± 0.84% 93.21± 0.49%

local 92.65± 0.78% 92.75± 1.38% 93.12± 0.68%

(b)

version, the dataset contains objects from 101 classes distributed amongst
8, 246 samples.

Network Architectures

We used two network configurations to test Matrix-LSTM on both datasets,
namely the classifier used in Events-to-Video (Rebecq et al., 2019), and the
one used to evaluate the EST (Gehrig et al., 2019a) reconstruction. Both
are based on ResNet (He et al., 2016) backbones and pre-trained on Im-
ageNet (Deng et al., 2009). Events-to-Video (Rebecq et al., 2019) uses a
ResNet18 configuration maintaining the first 3 channels convolution (since
reconstructed images are RGB) while adding an extra fully-connected layer
to account for the different number of classes in both N-Calthec101 and
N-Cars (we refer to this configuration as ResNet–Ev2Vid). EST (Gehrig et al.,
2019a) instead uses a ResNet34 backbone and replaces both the first and last
layers respectively, with a convolution matching the input features and a
fully-connected layer with the proper number of neurons (we refer to this
configuration as ResNet–EST).

To perform a fair comparison, we replicated the two settings, using the
same number of channels in the event representation (although we also
tried different channel values) and data augmentation procedures (random
horizontal flips and crops of 224× 224 pixels). We perform early stopping
on a validation set in all experiments, using 20% of the training on N-Cars
and using the splits provided by the EST official code repository (Gehrig
et al., 2019b) for N-Caltech101. ADAM (Kingma and Ba, 2015) optimizer was
used for all experiments with a learning rate of 10−4. Finally, we use a batch
size of 64 and a constant learning rate on N-Cars in both configurations. On
N-Caltech101, instead, we use a batch size of 16 while decaying the learning
rate by a factor of 0.8 after each epoch when testing on ResNet–Ev2Vid, and
a batch size of 100 with no decay with the ResNet–EST setup. Finally, we
compute the mean and standard deviation values using five different seeds
in all the experiments reported in this section to perform a robust evaluation.
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Table 4.2: Results on N-Cars with ResNet18-EST: (a) polarity + global ts + local ts
encoding, optional SELayer and variable number of bins; (b) polarity +
global ts + local ts encoding, SELayer and variable number of channels

SE 2 bins 4 bins 9 bins 16 bins

93.46± 0.84% 92.68± 0.62% 93.21± 0, 49% 92.01± 0.45%
X 93.71± 0.93% 92.90± 0.62% 93.30± 0, 47% 92.44± 0.43%

(a)

Channels
bins 4 8 16

1 93.88± 0.87% 93.60± 0.30% 94.37± 0.40%
2 93.05± 0.92% 93.97± 0.52% 94.09± 0.29%

bins 4 7 8

9 92.42± 0.65% 93.56± 0.46% 93.49± 0.84%

(b)

Results

The empirical evaluation is organized as it follows for both ResNet–Ev2Vid
and ResNet–EST. We always perform hyper-parameters search using ResNet18

on N-Cars, being faster to train and thus allowing us to explore larger pa-
rameter space. We then select the best configuration to train the remaining
architectures, i.e., ResNet34 on N-Cars and both variants on N-Caltech101.

matrix-lstm + resnet-ev2vid We start out with the ResNet–Ev2Vid
baseline (setting up the Matrix-LSTM to output 3 channels) by identifying
the optimal time feature to provide as input to the LSTM, as reported in
Table 4.1 a. We distinguish between ts and delay features and between absolute
and relative scope. The first distinction refers to the type of time encoding, i.e.,
the timestamp of each event in the case of ts feature, or the delay between an
event and the previous one in case of delay. Time features are always range-
normalized between 0 and 1, with the scope distinction differentiating if the
normalization takes place before splitting events into pixels (absolute feature)
or after (relative feature). In the case of ts, absolute means that the first and
last events in the sequence have time feature 0 and 1, respectively, regardless
of their position, whereas relative means that the previous condition holds
for each position (x, y). Note that we only consider relative delays since it is
only meaningful to compute them between the same pixel events. Finally, we
always add the polarity, obtaining a 2-value feature f (x,y)

i . Delay relative and
ts absolute are those providing the best results, with ts relative having higher
variance. We select delay relative as the best configuration. In Table 4.1 a we
also show the effect of applying the same frame normalization used while
pre-training the ResNet backbone on ImageNet also to the Matrix-LSTM
output. While performing normalization makes sense when training images
are very similar to those used in pre-training, as in Events-to-Video (Rebecq
et al., 2019), we found out that in our case, where no constraint is imposed on
the appearance of reconstructions, this does not improve the performance.
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matrix-lstm + resnet-est We continue the experiments on N-Cars
by considering ResNet–EST as a baseline, where we explore the effect of
using bins, i.e., intervals, on the quality of Matrix-LSTM surfaces.

Since multiple intervals are involved, we distinguish between global and
local temporal features. The first type is computed on the original sequence
E , before splitting events into intervals, whereas the latter locally, within
the interval scope Eτb . For local features we consider the best options we
identified on ResNet-Ev2Vid, namely delay relative and ts absolute, while we
only consider ts as global feature since a global delay loses meaning after
interval splitting. Results are reported in Table 4.1 b where values for single
bin are missing since there is no distinction between global and local scope.
Adding a global feature consistently improves performance helping the
LSTM perform integration conditioned on a global timescale, thus enabling
the extraction of consistent temporal features. We use the polarity feature
together with global ts + local ts features in the next experiments since this
provides better performance and reduced variance.

The next set of experiments was designed to select the optimal number
of bins, searching for the best B = 2, 4, 9, 16 as done in EST, while using a
fixed polarity + global ts + local ts configuration. In these experiments, we
also make use of the SELayer (Hu et al., 2018a), a self-attention operation
specifically designed to correlate channels. Being the number of channels
limited, we always use a reduction factor of 1. Please refer to the original
paper (Hu et al., 2018a) for more details. As reported in Table 4.2 a, adding
the layer consistently improves performance. We explain this by noticing
that surfaces computed on successive intervals are naturally correlated and,
thus, explicitly modeling this behaviour helps in extracting richer features.
Finally, we perform the last set of experiments to select the Matrix-LSTM
hidden size (which also controls the number of output channels). Results
are reported in Table 4.2 b. Note that we only consider 4, 7, 8 channels with
9 bins to limit the total number of channels after concatenation.

Discussion

Results of the top performing configurations for both ResNet-Ev2Vid and
ResNet-EST variants on both N-Cars and N-Caltech101 are reported in Ta-
ble 4.3. We use relative delay with ResNet-Ev2Vid and global ts + local ts
with ResNet-EST. Through an extensive evaluation, we show that using
Matrix-LSTM representation as input to the baseline networks and training
them jointly improves performance by a good margin. Indeed, using the
ResNet34-Ev2Vid setup, our solution sets a new state-of-the-art on N-Cars,
even surpassing the Events-to-Video model that was trained to extract re-
alistic reconstructions, and that could, therefore, take full advantage of the
ResNet pre-training.

The same does not happen on N-Caltech101, whose performance usually
greatly depends on pre-training also on the original image-based version,
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Table 4.3: Matrix-LSTM best configurations compared to state-of-the-art

Method Classifier
Channels

(bins)
N-Cars N-Caltech101

H-First (Orchard et al., 2015b) spike-based - 56.1 0.54
HOTS (Lagorce et al., 2016) histogram similarity - 62.4 21.0

Gabor-SNN (Sironi et al., 2018) SVM - 78.9 19.6

HATS (Sironi et al., 2018)
SVM - 90.2 64.2

ResNet34-EST Gehrig et al., 2019a - 90.9 69.1
ResNet18-Ev2Vid Rebecq et al., 2019 - 90.4 70.0

Ev2Vid Rebecq et al., 2019 ResNet18-Ev2Vid 3 91.0 86.6

Matrix-LSTM
(Ours)

ResNet18-Ev2Vid 3 (1) 95.80± 0.53 84.12± 0.84
ResNet34-Ev2Vid 3 (1) 95.65± 0.46 85.72± 0.37

EST (Gehrig et al., 2019a)
ResNet34-EST 2 (9) 92.5 81.7
ResNet34-EST 2 (16) 92.3 83.7

Matrix-LSTM
(Ours)

ResNet18-EST 16 (1) 94.37± 0.40 81.24± 1.31
ResNet34-EST 16 (1) 94.31± 0.43 78.98± 0.54
ResNet18-EST 16 (2) 94.09± 0.29 83.42± 0.80
ResNet34-EST 16 (2) 94.31± 0.44 80.45± 0.55
ResNet18-EST 2 (16) 92.58± 0.68 84.31± 0.59
ResNet34-EST 2 (16) 92.15± 0.73 83.50± 1.24

and where Events-to-Video has therefore advantage. Despite this, our model
only performs 0.9% worse than the baseline. On the ResNet-EST configu-
ration, the model performs consistently better on N-Cars, while slightly
worse on N-Caltech101 on most configurations. However, we remark that
the search for the best configuration was indeed performed on N-Cars, while
a hyper-parameter search directly performed on N-Caltech101 would have
probably lead to better results.

Additional classification experiments

We perform additional experiments on the N-MNIST dataset (Orchard et al.,
2015a) and on the newly introduced ASL-DVS (Bi et al., 2019) dataset. On
N-MNIST we directly compare with the Ev2Vid (Rebecq et al., 2019) re-
construction procedure, where the custom convolutional network proposed
in Rebecq et al. (2019) is used as backbone, while we compare with the
EST (Gehrig et al., 2019a) surface on ASL-DVS, making use of ResNet50 (He
et al., 2016) as backbone. On both cases, Matrix-LSTM performs better than
other event-surface mechanisms and also outperforms alternative classifica-
tion architectures.

4.5.2 Optical flow prediction

For the evaluation of optical flow prediction, we used the MVSEC (Zhu et al.,
2018a) suite. Fusing event-data with lidar, IMU, motion capture, and GPS
sources, MVSEC is the first event-based dataset to provide a solid benchmark
in real urban conditions. The dataset provides ground truth information
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Table 4.4: Classification accuracy (%) on the N-MNIST (Orchard et al., 2015a)
dataset.

Method Classifier Channels (bins) Accuracy

H-First spike-based -
HOTS (Lagorce et al., 2016) histogram similarity - 80.8
HATS (Sironi et al., 2018) SVM - 99.1
G-CNN (Bi et al., 2019) Graph CNN - 98.5

RG-CNN (Bi et al., 2019) Graph CNN - 99.0

Events Count (Bi et al., 2019) ResNet50 2 (1) 98.4

Ev2Vid (Rebecq et al., 2019)
Ev2Vid custom

convnet
1 (1) 98.3

Matrix-LSTM
(Ours)

Ev2Vid custom
convnet

1 (1) 98.9± 0.21

Table 4.5: Classification accuracy (%) on the ASL-DVS (Bi et al., 2019) dataset.

Method Classifier Channels (bins) Accuracy

G-CNN (Bi et al., 2019) Graph CNN - 87.5
RG-CNN (Bi et al., 2019) Graph CNN - 90.1

Events Count (Bi et al., 2019) ResNet50 2 (1) 88.6
EST (Gehrig et al., 2019a) ResNet50 2 (1) 99.57

Matrix-LSTM
(Ours)

ResNet50 2 (1) 99.73± 0.04
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for depth and vehicle pose and was later extended in (Zhu et al., 2018b)
with optical flow information extracted from depth-maps. The dataset has
been recorded on a range of different vehicles and features both indoor and
outdoor scenarios and different lighting conditions.

Network Architecture

We used the EV-FlowNet (Zhu et al., 2018b) architecture as a reference
model. To perform a fair comparison between Matrix-LSTM and the original
hand-crafted features, we built our model on top of its publicly available
codebase (Zhu et al., 2019b). We first made sure to revert the baseline
architecture to the original configuration, checking that could to replicate
the paper results. Indeed, the public code contains minor upgrades over the
paper version. We contacted the authors that provided us with the needed
modifications. These consist of removing the batch normalization layers,
setting to 2 the number of output channels of the layer preceding the optical
flow prediction layer, and disabling random rotations during training. For
completeness, we report the results we obtained by training the baseline
from scratch with these fixes in Table 4.6.

The original network uses a 4-channels event-surface, collecting in pairs
of separate channels based on the event polarity, the timestamp of the most
recent event, and the number of events that occurred in every spatial location.
We replaced this representation with a Matrix-LSTM making use of 4 output
channels, as well. We trained the model on the outdoor-day1 and outdoor-
day2 sequences for 300, 000 iterations, as in the original paper. We used the
ADAM optimizer with batch size 8, and an initial learning rate of 10−5,
exponentially decayed every 4 epochs by a factor of 0.8. We noticed that EV-
FlowNet is quite unstable at higher learning rates, while Matrix-LSTM could
benefit from larger rates, so we multiply its learning rate, i.e., the Matrix-
LSTM gradients, by a factor of 10 during training. Test was performed on a
separate set of recordings, namely indoor-flying1, indoor-flying2 and indoor-
flying3, which are visually different from the training data. The network
performance is measured in terms of average endpoint error (AEE), defined
as the distance between the endpoints of the predicted and ground truth
flow vectors. In addition, as proposed in the KITTI benchmark (Menze and
Geiger, 2015) and as done in Zhu et al. (2018b), we report the percentage of
outliers, namely points with endpoint error greater than 3 pixels and 5% of
the magnitude ground truth vector. Finally, following the procedure used
in (Zhu et al., 2018b), we only report the error computed in spatial locations
where at least one event was generated since the remaining part of the frame
is not visible from event data.



4.5 evaluation 70

Table 4.6: Optical flow estimation on MVSEC dataset

Method
indoor-flying1 indoor-flying2 indoor-flying3

dt=1 dt=4 dt=1 dt=4 dt=1 dt=4
AEE %Outlier AEE %Outlier AEE %Outlier AEE %Outlier AEE %Outlier AEE %Outlier

Two-Channel Image (Maqueda et al., 2018) - 1.21 4.49 - - 2.03 22.8 - - 1.84 17.7 - -
Ev-FlowNet Zhu et al., 2018b - 1.03 2.2 2.25 24.7 2.12 15.1 4.05 45.3 1.53 11.9 3.45 39.7

Ev-FlowNet (ours) - 1.015 2.736 3.432 48.685 1.606 12.089 5.957 63.226 1.548 11.937 5.247 57.662

Voxel Grid (Zhu et al., 2019a) - 0.96 1.47 - - 1.65 14.6 - - 1.45 11.4 - -

EST (Gehrig et al., 2019a)
exp. kernel 0.96 1.27 - - 1.58 10.5 - - 1.40 9.44 - -

learnt kernel 0.97 0.91 - - 1.38 8.20 - - 1.43 6.47 - -

Matrix-LSTM
(Ours)

1 bin 1.017 2.071 3.366 42.022 1.642 13.89 5.870 65.379 1.432 10.44 5.015 57.094
2 bins 0.829 0.471 2.269 23.558 1.194 5.341 3.946 42.450 1.083 4.390 3.172 31.975

2 bins + SE 0.821 0.534 2.378 25.995 1.191 5.590 4.333 45.396 1.077 4.805 3.549 36.822
4 bins 0.969 1.781 3.023 36.085 1.505 11.63 4.870 49.077 1.507 12.97 4.652 43.267

4 bins + SE 0.844 0.634 2.330 24.777 1.213 6.057 4.322 44.769 1.070 4.625 3.588 36.442
8 bins 0.881 0.672 2.290 24.203 1.292 6.594 3.978 42.230 1.181 5.389 3.346 33.951

8 bins + SE 0.905 0.885 2.308 24.597 1.286 6.761 4.046 44.366 1.177 5.318 3.391 35.452

Results

In the previous classification experiments, we observed that the type of
temporal features and the number of bins play an important role in extracting
effective representations. We expect time resolution to be a key factor in optical
flow prediction; hence, we focus on measuring how different interval choices
impact the flow prediction. Rather than exploring different types of time
features, as done in classification experiments, we decided to use the polarity
+ global ts + local ts configuration, which worked well on N-Cars while
considering different bin setups. Results are reported in Table 4.6.

As expected, varying the number of bins has a significant impact on per-
formance. The AEE metric, indeed, dramatically reduces by only considering
two intervals instead of one. Interestingly, we achieved the best performance
by considering only 2 intervals, as adding more bins hurts performance.
We believe this behaviour resides in the nature of optical flow prediction,
where the network is implicitly asked to compare two distinct temporal
instants. This configuration consistently improves the baseline up to 30.76%
on indoor-flying2, highlighting the capability of the Matrix-LSTM to adapt
to low-level vision tasks where both spatial and temporal resolutions are
critical factors for performance.

Ev-FlowNet (Zhu et al., 2018b) was tested on two evaluation settings for
each test sequence to test how the network adapts to different flow magni-
tudes. In the first setting, the input frames and corresponding events are
one frame apart (denoted as dt=1), while in the second one, we consider the
events within every four frames (denoted as dt=4). While we were able to
closely replicate the results of the first configuration (dt=1), with a minor
improvement in the indoor-flying2 sequence, the performance we obtain on
the dt=4 setup is instead worse on all sequences, as reported on the second
and third rows of Table 4.6. Despite this discrepancy, which prevents the
Matrix-LSTM performance on dt=4 settings to be directly compared with the
results reported on the Ev-FlowNet paper, we can still evaluate the relative
improvement of using our surface over the original representation on larger
flow magnitudes. Using our Ev-FlowNet results as a baseline, we show that
Matrix-LSTM can improve the optical flow quality even on the dt=4 setting,
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Table 4.7: Comparison between Matrix-LSTM and ConvLSTM on both Ev2Vid and
EST ResNet18 configurations on the N-Cars dataset

delay relative ts absolute
3× 3 5× 5 3× 3 5× 5

Ev2Vid with
3 chans, 1 bin

Matrix-LSTM (ours) 95.05± 0.96% 93.38± 0.64% 94.92± 0.74% 94.34± 0.94%
ConvLSTM 92.33± 0.41% 92.65± 0.78% 93.97± 1.30% 93.61± 1.59%

EST with
16 chans, 1 bin

Matrix-LSTM (ours) 93.14± 0.77% 92.18± 0.28% 92.83± 1.32% 92.15± 0.67%
ConvLSTM 90.39± 0.94% 90.73± 1.05% 92.52± 1.26% 92.05± 0.56%

highlighting the capability of the layer to adapt to different sequence lengths
and movement conditions. We report an improvement of up to 39.546% on
dt=4 settings using our results as a baseline, showing the importance of hav-
ing a mechanism that can model temporal dependencies across potentially
distant time lags. The results we obtained show that adding an SELayer only
improves performance on the 4 bins configuration for the dt=4 benchmark,
while it consistently helps reducing the AEE metric on the dt=1 setting. By
comparing features obtained from subsequent intervals, the SELayer adap-
tively recalibrates features and helps to model interdependencies between
time instants, which is crucial for predicting optical flow. We believe that
a similar approach can also be applied to other event aggregation mecha-
nisms based on voxel-grids of temporal bins to improve their performance,
especially those employing data-driven optimization mechanisms (Gehrig
et al., 2019a).

4.6 qualitative results
The event aggregation process performed by the Matrix-LSTM layer is
incremental. Events in each pixel location are processed sequentially; state
and output of the LSTM are updated each time. We propose to visualize
the Matrix-LSTM surface as an RGB image by using the ResNet18-Ev2Vid
configuration and interpreting the 3 output channels as RGB color. A video
of such visualization showing the incremental frame reconstruction on N-
Caltech101 samples is provided at this url: https://marcocannici.github.
io/matrixlstm. See Figure 4.3 for some examples.

We use a similar visualization technique to show optical flow predictions
for indoor-flying sequences. Since we use our best performing model that uses
2 temporal bins, we decide to only show the first 3 channels of each temporal
interval. Moreover, instead of visualizing how the event representation
builds as new events arrive, we only show the frame obtained after having
processed each window of events.

https://marcocannici.github.io/matrixlstm
https://marcocannici.github.io/matrixlstm
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(a) frame 242

(b) frame 297

Figure 4.3: Visualization of the two-dimensional representation learned by Matrix-
LSTM for optical flow prediction on the indoor-flying sequences from
MVSEC (Zhu et al., 2018a). Full videos can be found at https:

//marcocannici.github.io/matrixlstm.

https://marcocannici.github.io/matrixlstm
https://marcocannici.github.io/matrixlstm


4.6 qualitative results 73

Figure 4.4: Effect of the receptive field size on Matrix-LSTM reconstructions. From
left to right, 1× 1, 3× 3 and 5× 5 kernel size. Increasing the receptive
field results in blurry reconstructions

4.6.1 Matrix-LSTM vs. ConvLSTM

classification accuracy In Table 4.6 we compare Matrix-LSTM with
ConvLSTM (Shi et al., 2015) for different choices of kernel size on the
N-Cars (Sironi et al., 2018) dataset using the ResNet18-Ev2Vid backbone.
When using ConvLSTM, events are densified in a volume Ẽdense of shape
N × T(x,y)

max × H ×W × F.
Matrix-LSTM performs better on all configurations, highlighting its ca-

pabilities to better handle asynchronous event-based data, compared to
ConvLSTM, when larger receptive fields are considered. Indeed, since pixels
at different locations most often fire at different times and with different
frequencies, the Ẽdense[n, i, :, :, :] slice processed by the ConvLSTM in each
iteration does not contain all simultaneous events. While delays are always
consistent within each pixel sequence, they are not within the ConvLSTM
kernel receptive field. By using a receptive field larger than 1× 1, in fact,
ConvLSTM compares a neighborhood of events that occurred at different
timestamps and, therefore, not necessarily correlated. Using an absolute tem-
poral encoding alleviates this issue on both Ev2Vid and EST architectures
while still performing worst than Matrix-LSTM. Matrix-LSTM allows for
greater flexibility when large receptive fields are considered. Our reconstruc-
tion layer preserves the original events arrival order within each receptive
field, which allows us to achieve better performance both on ts absolute and
delay relative features, without requiring events to be densified during inter-
mediate steps. Moreover, structured delay relative features perform better on
Matrix-LSTM than simple absolute features.

We do not compare the two LSTMs on the 1× 1 configuration since, when
using Ẽdense as input to ConvLSTM, the two configurations compute the
same transformation, despite ConvLSTM having to process more padded
values. The two settings are indeed computationally equivalent only in the
worst case in which all pixels in the batch happen to receive at least one
event (i.e., P = N · H ·W). However, larger receptive fields achieve lower
performance than the 1× 1 Matrix-LSTM best configuration in Table 4.1
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Figure 4.5: Space and time relative improvements of Matrix-LSTM over ConvLSTM
as a function of input density (from 10% to 100% with 30% steps).
Colors refer to different density, from low density (dark colors) to high
density (light colors)

a. Event surfaces produced by the Matrix-LSTM layer are indeed more
blurry with larger receptive fields (see Section 4.6), and this may prevent
the subsequent ResNet backbone from extracting effective representations.
Using a 1× 1 kernel enables to focus on temporal information while the
subsequent convolutional layers deal with spatial correlation.

time and space efficiency The 1× 1 configurations are compared in
terms of space and time efficiency in Figure 4.5. We use the two layers to
extract a 224× 224 frame from artificially generated events with increasing
density, i.e., the ratio of pixels receiving at least one event. The reconstruction
is performed using PyTorch (Steiner et al., 2019) on a 12GB Titan Xp, by
varying the batch size, the LSTM hidden size, and the number of events
in each active pixel (starting from 1 and increasing by a factor of 2 for the
hidden size, while increasing by a factor of 10 for the number of events, until
allowed by GPU memory constraints). We compute the relative improvement
of Matrix-LSTM in terms of sample reconstruction time and peak processing
space (i.e., excluding model and input space) during both forward and
backward passes. Finally, we aggregate the results by batch size computing
the mean improvement over all the trials.

Matrix-LSTM performs better than ConvLSTM on prediction time. The
time efficiency improves as the batch size increases, while worse than ConvL-
STM on memory efficiency in very dense surfaces (> 70% density). However,
this situation is relatively uncommon in event-cameras since they only gener-
ate events when brightness changes are detected. Uniform parts of the scene
that remain unchanged, despite the camera movement, do not appear in the
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Method Bins Channels Asynch.
Time
[ms]

Speed
[kEV/s]

Gabor-SNN (Sironi et al., 2018) - - Yes 285.95 14.15
HOTS (Lagorce et al., 2016) - - Yes 157.57 25.68
HATS (Sironi et al., 2018) - - Yes 7.28 555.74
EST (Gehrig et al., 2019a) 9 2 No 6.26 632.9

Matrix-LSTM
(Ours)

1 3 No 10.89 385.7
9 2 No 8.25 468.36

(b)

Mean reconstruction time (on GPU) [ms]
Bins Ev-FlowNet (Zhu et al., 2018b) surf. EST (Gehrig et al., 2019a) Matrix-LSTM

1 2.53± 2.74 3.62± 2.35 3.20± 0.97
2 2.01± 1.22 3.94± 1.47 5.18± 1.68
9 2.04± 1.20 9.09± 1.96 4.92± 1.47

(c)

Figure 4.6: (a) Accuracy as a function of latency (adapted from Sironi et al. (2018)).
(b) Average sample computation time on N-Cars and number of events
processed per second. (c) Average time to reconstruct the event surface
in MVSEC test sequences.

event stream. For instance, the background sky and road in MVSEC (Zhu
et al., 2018a) make outdoor-day sequences only have an average 10% of active
pixels.

4.6.2 Time performance analysis

We compared the time performance of Matrix-LSTM with other event repre-
sentations following EST (Gehrig et al., 2019a) and HATS (Sironi et al., 2018)
evaluation procedure. In Table 4.6b we report the time required to compute
features on a sample averaged over the whole N-Cars training dataset for
both ResNet–Ev2Vid and ResNet–EST configurations. Our surface achieves
similar time performance than both HATS and EST, performing only ∼2ms
slower than EST on the same setting (9 bins and 2 channels). Similarly,
in Table 4.6c, we compute the mean surface reconstruct time for MVSEC
indoor-flying test sequences. While EST can exploit parallel batch computa-
tion of events within the same sample, since each event feature is processed
independently, Matrix-LSTM relies on sequential computation to reconstruct
the surface. However, the custom CUDA kernels we designed, enable bins
and pixel sequences to be processed in parallel, drastically reducing the
processing time. Please, refer to the additional materials for more details.
All evaluations are performed with PyTorch on a GeForce GTX 1080Ti GPU.

In Figure 4.6a we analyze the accuracy-vs-latency trade-off on the N-Cars
dataset, as proposed in Sironi et al. (2018), using the ResNet18-Ev2Vid con-
figuration. While the performance of the model, trained on 100ms sequences,
significantly drops when very few milliseconds of events are considered, the
proposed method still shows good generalization, achieving better perfor-
mance than the baselines when more than 20ms of events are used. However,
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Figure 4.7: Number of processed events per second (dashed lines) and timing (solid
lines) with varying number of channels (a), and bins (b)

fixing the performance loss on small latencies is just a matter of training
augmentation: by randomly cropping sequences to variable lengths (from
5ms to 100ms), our method consistently improves the baselines, dynamically
adapting to sequences of different lengths.

While the performance reported in Figure 4.6b are computed on each
sample independently to enable a fair comparison with the other methods, in
Figure 4.7a and Figure 4.7b we study instead how the mean time required to
process a sample over all the N-Cars training dataset and the corresponding
events throughput change as a function of the batch size. Both performances
dramatically increase when multiple samples are processed simultaneously
in batch. This is crucial at training time when optimization techniques
greatly benefit from the batch computation.

Furthermore, while increasing the number of output channels for the same
choice of batch size increases the time required to process each sample (since
the resulting Matrix-LSTM operates on a larger hidden state), increasing the
number of bins has an opposite behaviour. Multiple intervals are indeed
processed independently and in parallel by the Matrix-LSTM that has to
process a smaller number of events in each spatial location, sequentially.
In both configurations, finally, increasing the batch size reduces the mean
processing time.

4.7 conclusion
In this chapter, we proposed Matrix-LSTM, an effective method for learning
dense event representations from event-based data. By modeling the recon-
struction with a spatially shared LSTM we obtained a fully differentiable
procedure that can be trained end-to-end to extract the event representation
that best fits the task at hand. Focusing on efficiently handling asynchronous
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data, Matrix-LSTM preserves sparsity during computation and surpasses
other popular LSTM variants on space and time efficiency when processing
sparse inputs. In this regard, we proposed an efficient implementation of
the method that exploits parallel batch-wise computation and demonstrated
the effectiveness of the Matrix-LSTM layer on multiple tasks, improving the
state-of-the-art of object classification on N-Cars by 3.3% and the perfor-
mance on optical flow prediction on MVSEC by up to 23.07% over previous
differentiable techniques (Gehrig et al., 2019a). Although we only integrate
windows of events, the proposed mechanism can be extended to process a
continuous streams thanks to the LSTM memory that is able to update its
representation as soon as a new event arrives.



5 V I D E O O B J E C T S E G M E N TAT I O N W I T H
S PAT I O -T E M P O R A L F E AT U R E S M O D -
U L AT I O N

Generalization to new classes of objects that have never been observed
during training is a challenging problem for supervised learning approaches,
which usually need to be retrained.

In this chapter, we introduce ReConvNet, a recurrent convolutional ar-
chitecture for one-shot video object segmentation that is able to focus on
any specific object of interest by observing a single annotated example at
inference time. We propose an efficient solution that learns to self-adapt
spatio-temporal features via conditional affine transformations. This ap-
proach is simple, can be trained end-to-end, and does not necessarily require
extra training steps at inference time. Our method shows competitive results
on the DAVIS2016 dataset compared to state-of-the art approaches that
use online fine-tuning and outperforms them on DAVIS2017. Furthermore,
ReConvNet also shows promising results on the DAVIS-Challenge 2018,
placing itself among the top-10 methods.

5.1 introduction
Semi-Supervised Video Object Segmentation is the task of segmenting spe-
cific objects of interest in a video sequence, given their segmentation in
the first frame. This poses an non-trivial challenge for standard supervised
methods, as the model cannot be trained as usual to discriminate between a
fixed set of classes based on semantics (Badrinarayanan et al., 2017; Long et
al., 2015; Visin et al., 2016), but rather has to learn to segment unseen objects
based on a single example. In this respect, classic supervised techniques typ-
ically fail to easily generalize to new objects whose traits are potentially very
different from those of the training data requiring a shift of paradigm in the
way learning is conceived. In the context of Video Object Segmentation this
is usually solved by implementing a two stage training (Caelles et al., 2017;
2018; Voigtlaender and Leibe, 2017a): a first general training is performed on
the entire dataset, then the generic segmentation model is adapted for each
test sequence by fine-tuning on transformations of the first frame. Although
it has been shown that fine-tuning the model on each specific object can be
very effective for this kind of task, this is computationally expensive as it

78
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requires several extra steps of back-propagation for each video sequence.
Moreover this method requires to carefully design the data augmentation
procedure (Khoreva et al., 2017a) in order to limit the overfitting on the first
frame. This is often non-trivial, especially if the object changes across the
frames significantly or is occluded by other objects in the scene. Indeed,
generating high-quality segmentations from a single frame is a hard task
by itself and adds an extra layer of complexity to the problem; producing
convincing synthetic sequences requires, e.g., to generate realistic transfor-
mations of the foreground object and recover the background in the parts of
the image that were occluded by the foreground in the original image but
are not after the foreground transformation is applied.

A better way of thinking is to consider each video’s segmentation as
separate problems sampled from a distribution of tasks, where each task
involves distinguishing new objects by observing a single annotated frame.
This scenario is generally referred to in the literature as few-shot learning,
where tasks challenge models to learn a new concept or behaviour with very
few examples or limited experience (Fei-Fei et al., 2007; Lake et al., 2011;
Li Fei-Fei et al., 2006). One approach to address this class of problems is
meta-learning (Schmidhuber, 1987), a broad family of techniques focused on
learning how to learn (Baxter, 1995; 1998; 2000; Hochreiter et al., 2001; Thrun
and Pratt, 1998) or to quickly adapt models to new information (Hinton and
Plaut, 1987).

5.1.1 Main Contributions

Following the meta-learning paradigm, we propose an approach for video
object segmentation that allows a base network to self-adapt to the specific
object of interest at inference time, without resorting to expensive fine-tuning
steps. This mechanism is inspired by fast-weights (Schmidhuber, 1992), where
a slow network generates the weights of a second one – namely the fast network
– to fast adapt on the fly to a new task or to a change in the environment.

While it is often more effective to specifically fine-tune the network to dis-
tinguish the instance of interest, a self-adaptation mechanism that redirects
a known and well-performing generic segmentation strategy to focus on
a specific element of interest appears more biologically plausible (DiCarlo
et al., 2012; Lee et al., 2015) and resonates better with those applications
where an increase in inference time is non-negligible.

Following this mindset, we introduce ReConvNet, a recurrent convolutional
architecture for one-shot video object segmentation. The proposed model
is composed of a core (fast) segmentation network and two slow networks
that modulate the main one via affine transformations of its activations.
By means of these modulators, the network is able to autonomously adapt
to segment unseen object(s) without resorting to extra fine-tuning steps at
inference time.
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The main contributions of this work are as follows:

• We reinterpret the successful OSMN (Yang et al., 2018) video segmen-
tation architecture from a meta-learning perspective and propose an
extension with convLSTM units that allow modeling intrinsic temporal
correlations across frames of the sequence. Our improved network
outperforms the baseline, showing the benefits of explicitly harnessing
the temporal interactions between the frames.

• Our model exhibits comparable performances to methods that make
use of online fine-tuning on DAVIS2016 and outperforms them on the
more challenging DAVIS2017.

• We score 10-th in the DAVIS challenge 2018 without resorting to online
fine-tuning or other post-processing steps.

• We show that feature modulation is orthogonal to online fine-tuning
and that, indeed, combining the two results in a further performance
boost.

5.1.2 General Problem definition

For simplicity, we first consider the general case of N-way K-shot classi-
fication tasks, where the goal is to assign categories from a set of labels
{1 . . . N} by observing K annotated samples. We follow the episodic training
formulation proposed by Vinyals et al. (2016).

Each task instance τi is a classification problem sampled from a task
distribution p(τ). As in supervised learning, samples are divided into a
meta-training set S tr, meta-validation set Sval and meta-test set S test, with a
disjoint set of target classes to evaluate performance on new tasks.

Each task τi ∼ p(τ) consists in two separate sets: a training set Dtrain
i (or

support set), and a validation set Dval
i (or query set) which only contain samples

from N classes randomly selected from the appropriate meta-set. In general,
the support set for an N-way K-shot classification task can be defined as:

Dtrain
i = {(xk

n, yk
n|k = 1 . . . K, n = 1 . . . N)}, (5.1)

a collection containing K samples, also called shots, for each n class. The
query set Dval

i usually contains several other samples of the same classes and
it is used to evaluate the generalization performance of the model on new
instances of the task. Note the importance of understanding the difference
between the meta-validation set Sval, a collection of independent problems
used for model selection, and the query set Dval

i , which contains samples of
a specific task τi on which the selected model is tested.
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generating tasks Starting from a classification dataset annotated for
supervised learning with enough C classes , it is possible to generate a
dataset of episodes for few-shot classification by splitting into three sets of
disjoint classes (meta-train, meta-val, meta-test). An N-way K-shot classification
task is then obtained with stratified sampling, by first sampling N different
classes from the available ones in the meta-set, and then sampling several
instances of each class. The collected samples are then split into the support
and query sets, where the first should contain K samples for each class.
Since tasks are independent problems, labels are randomly assigned when
sampling the tasks classes.

one-shot video object segmentation Following the definition above,
semi-supervised Video Object Segmentation can be cast as a few-shot learn-
ing problem. Tasks consist of segmenting specific objects in video sequences
by using a single shot annotation. In meta-learning terms, the support set
consists of the first annotated frame of the sequence, and the query set
consists of the rest of the video, which is used to evaluate the generaliza-
tion performance of the segmentation algorithm. We distinguish between
foreground/background segmentation tasks where the number of classes N = 2,
the object of interest plus the background, and multi-object segmentation tasks
where we want to distinguish between multiple objects in the same video
and N > 2.

5.2 background and related work
Video Object Segmentation witnessed an increasing interest in the last few
years, also thanks to the release of the DAVIS datasets (Perazzi et al., 2016)
and to the related competitions (Caelles et al., 2018; Pont-Tuset et al., 2017).
This task can be addressed either in an unsupervised or semi-supervised
fashion. In the first case, no prior information on the object of interest is
available, while in the second, the segmentation mask of the object is given
for the first frame. In this work, we focus on the semi-supervised setting, in
the specific instance of one-shot video segmentation.

5.2.1 Semi-supervised Video Object Segmentation

mask propagation and finetuning In the semi-supervised setting the
Video Object Segmentation problem can be considered as tracking the mask
of each given object throughout the sequence. MaskTrack (Khoreva et al.,
2017b) pretrains a part of the network on static images and then builds on it
to refine a rough mask estimate of the segmentation of the previous frame
into the predicted mask of the current frame. A variant of the network also
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explores the use of optical flow information to transform the previous mask
into an estimate of the current mask to be then refined by the network.

OSVOS and its variants (Caelles et al., 2017; 2018; Voigtlaender and Leibe,
2017a) are based instead on a fully-convolutional network (Long et al., 2015)
adapted from VGG-16 (Simonyan and Zisserman, 2015) that is first trained
on the entire dataset and then fine-tuned on the target instance at inference
time. Both OSVOS and MaskTrack have been very influential, indeed the
first three approaches (Khoreva et al., 2017a; Li et al., 2017a; Nguyen
et al., 2017) of the DAVIS2017 Challenge on instance video segmentation
base on MaskTrack and the next six (Cheng et al., 2017; Newswanger and
Xu, 2017; Shaban et al., 2017; Sharir et al., 2017; Voigtlaender and Leibe,
2017b; Zhao, 2017) on OSVOS. In order of performance, Li et al. (2017a)
improves over MaskTrack by recovering the instances missed by the mask
propagation module, e.g., in case of occlusions, via a re-identification module
that ranks a set of bounding box candidates by similarity to the instance
template. Nguyen et al. (2017) also implements a re-identification module
but, as opposed to Li et al. (2017a), two different pathways are employed to
detect and track human and non-human bounding boxes. Each box is then
segmented using binary SVM classifiers and an heuristic to determine the
relative depth of the boxes.

data augmentation techniques Methods based on OSVOS and Mask-
Track rely heavily on the quality of the data augmentation procedure. Indeed,
applying simple random rigid transformations, as is usually done for im-
age recognition, is not enough for video object segmentation. The shape
and pose of the objects often vary significantly throughout the sequence
from those of the initial frame, which makes it hard to generate samples
that exhibit enough variety and complexity for generalization. Nonetheless,
Lucid Dream (Khoreva et al., 2017a) proposes a data augmentation proce-
dure that generates convincing synthetic frames from the initial segmented
mask. The augmentation is performed by removing the foreground object,
in-painting the background, applying a global translation and an affine
non-rigid transformation to both the foreground and the background, and
finally recomposing the scene via Poisson matting (Sun et al., 2004).

temporal correlation Most of the works based on MaskTrack evolve
one prediction into the next in a Markovian fashion, while those based on
OSVOS usually perform single frame segmentation disregarding the tempo-
ral correlation between frames completely. Only a few methods exploit the
full temporal correlation between the frames, usually focusing on capturing
the motion displacement to use it as a guidance for segmentation. Among
those, Cheng et al. (2018), Hu et al. (2018b), and Xiao et al. (2018a) either
exploit the optical flow or introduce explicit tracking components in the
network to perform segmentation. Tokmakov et al. (2017) instead, similarly
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to our work, model the evolution of objects over time using recurrent neural
networks. Here a two streams encoder decouples the motion and appearance
cues, which are then recombined by a convGRU (Ballas et al., 2016) decoder.

efficiency Finally, a number of works focus on inference efficiency and
propose solutions that do not resort to online finetuning. In Wug Oh et
al. (2018) the authors build a Siamese encoder-decoder network for fast
object video segmentation that can do inference at 10 FPS, while Chen et al.
(2018b) uses a FCN to learn an embedding space with a triplet loss and
then classifies each pixel according to nearest neighbor in embedding space.
Interestingly, Chen et al. (2018b) also find it beneficial to provide the model
with explicit spatio-temporal information in the form of indices concatenated
to the input frames.

5.2.2 Meta-Learning for few-shot learning problems

Supervised approaches generally perform poorly on few-shot learning tasks,
where a model has to quickly generalize from very few examples. If the data
distribution drifts from the one experienced during training, the model will
likely need to be retrained to adapt to the changes. This can be expensive
and not always possible.

A more flexible paradigm for this kind of problem is to build a system
that is able to learn how to adapt itself to the new data. Learning a general
algorithm capable to tailor itself to the specific instance of the problem
is know as Learning to Learn or Meta-Learning (Schmidhuber, 1987). Meta-
Learning aims to learn how to extract knowledge from a collection of tasks
that can be reused to solve novel, unobserved tasks sampled from the same
distribution. Meta-learning is particularly tailored for few-shot learning
problems where multiple related tasks share a common structure. Each task
or episode contains only a few labeled examples, the support set, that are used
to adapt the model and generalize to new examples, the query set.

bilevel optimization view Meta-training is usually cast as bilevel op-
timization, namely a hierarchical optimization problem where an outer
objective is constrained by the solution of an inner optimization prob-
lem (Franceschi et al., 2018). Following this notation, meta-training can
be formalised as learning over a distribution of tasks p(τ) (or episodes)
follows:

ω∗ = arg min
ω

M

∑
i=1
Lmeta(θ∗i (ω), ω,Dval

i )

s.t. θ∗i (ω) = arg min
θ

Ltask(θ, ω,Dtrain
i )

(5.2)

where Lmeta and Ltask refer to the outer and inner objectives respectively,
e.g., cross-entropy in the case of few-shot classification or segmentation,
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and each task is defined as {Dtrain
i ,Dval

i } ∼ p(τ), by sampling from the
task distribution. The inner and outer levels follow a leader-follower (Stack-
elberg, 1952) structure: the inner level optimization is conditional on the
learning of ω defined by the outer loop, but it cannot directly modify ω

during its optimization. In practice, the outer problem learns ω such that
it produces a model θ∗i (ω) that performs well on the validation set Dval

i
after the optimization on the training set Dtrain

i . Note that ω could indi-
cate hyper-parameters (Franceschi et al., 2018; Lorraine et al., 2020), weight
initializations (Finn et al., 2017), or even parametric loss/regularization
functions (Balaji et al., 2018; Bechtle et al., 2021; Li et al., 2019).

Optimization based approaches explicitly solve the inner optimization
in Equation (5.2). A famous example is MAML (Finn et al., 2017), which
aims to find a shared initialization of the model parameters, across all tasks
of the distribution that can be quickly adapted to task-specific parameters
in a few steps of gradient descent. The meta-initialization is then obtained
by differentiating through the updates of the base model. The main issues
with this class of algorithms is the heavy load of computation they require
when meta-training complex learners because of the necessity to compute
second-order derivatives. Simplified models have been proposed to scale
optimization-based approaches and overcome their limitations, performing
on par or better than the original MAML model (Antoniou et al., 2019;
Raghu et al., 2020; Rajeswaran et al., 2019; Vuorio et al., 2019; Zintgraf et
al., 2019). More elaborate alternatives also learn step sizes(Li et al., 2017b),
gradient preconditioning (Flennerhag et al., 2020; Park and Oliva, 2019),
or train recurrent networks to predict steps from gradients (Andrychowicz
et al., 2016; Ravi and Larochelle, 2017).

model-based view A more direct way of fast-adapting to a new task
is to use model-based approach rather than explicitly solve an iterative
optimization problem as in Equation (5.2). This approach has been proposed
in different context under many names, but it stems from the original idea
of fast-weights (Hinton and Plaut, 1987; Schmidhuber, 1992) where a slow
network g(·) synthesizes the model to solve a task τi ∼ p(τ) by generating
context-dependent weights for a fast network f (·) conditioned on the support
set:

ω∗ = arg min
ω

∑
τi∼p(τ)

{Dtrain
i ,Dval

i }∈τi

∑
(x,y)∈Dval

i

Ltask( f (x; g(Dtrain
i , θ)), y) (5.3)

Model-based approaches are powerful meta-learner, however generating
the weights on an entire neural network is not sustainable and generally
ends up in rapidly overfitting the training data. Ha et al. (2017) proposed
HyperNetworks, a modification of the original fast-weights formulation where
the network infers a transformation of the weights rather than generating
the weights themselves. A recurrent version of the model is also proposed,
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where the weights of an RNN are dynamically generated at each timestep
adapting to the changes of the input sequence. Recently FiLM (Perez et al.,
2018) suggested to extend conditional batch-normalization with a module
that produces an affine transformation to be applied to the features of each
layer of the main network to impose a more explicit conditioning. The idea of
modulating the features conditionally has been initially applied to improve
the efficiency of the inference step in artistic style transfer (Dumoulin et al.,
2017; Ghiasi et al., 2017). In the context of object segmentation, features
modulation has been investigated on the DAVIS dataset by OSMN (Yang
et al., 2018), that extends OSVOS (Caelles et al., 2017) by specializing a part
of the architecture to condition the predictions on the target object.

5.3 reconvnet: a recurrent convolutional
model for fast object segmentation

We continue on the same path traced by OSMN Yang et al., 2018, having a
model-based meta learner that is able to self-adapt to perform segmenta-
tion on new objects without necessarily resorting to gradient update steps.
Specifically, this is achieved by modulating the activations of a recurrent
convolutional Segmentation Network (SN) via a single forward pass of a Mod-
ulating Network (MN) that outputs a scale parameter for each channel based
on the object features, and a shift parameter for each location that acts as a
spatial attention mechanism similar to Stollenga et al. (2014). The segmenta-
tion network learns to perform generic segmentation, and the modulators
fast-adapts its activation to attend to the object of interest. We now give a
detailed description of the main components of the proposed model.

5.3.1 Segmentation Network

The segmentation module is an encoder-decoder network that processes
the frames and produces the segmentation masks. This component extends
the original OSMN Segmentation Network, which is implemented as a
Fully-Convolutional Network (FCN) based on the VGG-16 feature extrac-
tor (Simonyan and Zisserman, 2015).

In order to recover details at multiple scales, the encoder layers are
propagated to the decoder after bilinear upsampling in a hyper-column
fashion (Hariharan et al., 2015). While in OSMN each frame is processed
independently, often resulting in segmentation masks that lack temporal
consistency and exhibit high variance across the sequence. A natural way
to incorporate temporal structure into the model is to add recurrent units.
convLSTM layers, an adaptation of the original LSTM (Hochreiter and
Schmidhuber, 1997b) cell that takes into account the spatial structure of
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Figure 5.1: ReConvNet architecture. The Segmentation Network (yellow) is a VGG-
16-based architecture enhanced with convLSTM layers. The Visual Mod-
ulator (blue) biases the SN to be selective toward the object of interest
via a per-channel multiplicative interaction, while the Spatial Modulator
(red) enforces a spatial prior via an additive per-pixel modulation.

its inputs as well as their temporal correlation (Xingjian et al., 2015). The
convLSTM blocks are interleaved to the last three VGG-16 layers to endow
the network with multi-scale spatio-temporal processing capability.

5.3.2 Visual Modulator

The visual modulator is in charge of biasing the activations of the segmentation
network to target the object of interest. This strong conditioning is achieved
by a second VGG-16 network, deprived of the last classification layer, that
takes as input the first frame cropped around the target object and resized
to 224× 224, and produces a set Γ of vectors of scaling coefficients — one
for each of the last three convolutional layers of the Segmentation Network.
In addition to the coefficients computed for the non-recurrent components
of the SN, we also compute those for the convLSTM layers. All the visual
modulation coefficients are multiplied to the feature maps:

f̃i = γi � fi, (5.4)

where � indicates channel-wise multiplication. This has the effect of en-
hancing the maps related to the target object and suppressing the least
useful, potentially distracting ones, allowing the segmentation network to
quickly adapt to the object of interest without gradient-based optimization
at inference time. Interestingly, the parameters produced by the visual mod-
ulator can be interpreted as a class embedding, as similarly done in neural
processes-based architectures which generates the weights classifier directly
from task or class embeddings (Garnelo et al., 2018; Gordon et al., 2019;
Requeima et al., 2019).
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5.3.3 Spatial Modulator

To help discriminating between multiple instances of the same object and,
more generally, to provide a loose prior on the location of the target object,
the network is also enriched with a spatial attention mechanism. A rough
estimate of the position of the target object can be obtained by fitting a
“gaussian blob” on the segmentation predicted at time t and fed to a Spatial
Modulator component. This, in turn, produces a set of shift coefficients β, one
for each of the last three VGG layers, via a 1× 1 convolution applied to the
blob downsampled to the layer’s resolution. Note that, as opposed to the
VM case, we do not generate the modulation coefficients for the convLSTM
layers. The spatial coefficients are summed pixel-wise to the activations
of the corresponding layers, hence shifting the focus on the parts of the
image where the object is more likely located. The two modulators are then
combined in a single transformation and applied to all the features:

f̃i = γi � fi + βi(t). (5.5)

Notably, while the VM generates a single set of weights for all the frames –
being applied in the same way to all the frames of the sequence – the Spatial
Modulator produces an estimate of the position of the object for each frame
at instant t, given the blob at the previous time step t− 1.

5.4 experiments
In this section we first describe the experimental settings used to evaluate
the ReConvNet model, then we comment the results obtained with our best
configuration on the single and multi instance segmentation tasks on DAVIS.

two-stages training In order to make use of the relative abundance
of segmented static images for pre-training, we split the training process in
two phases. First, we train the non-recurrent components of the model on
MSCOCO (Lin et al., 2014) to learn segmentation coupled with modulation.
In this phase, the backbone network learns general basic segmentation
strategies, while the visual modulator learns to extract the appearance
characteristics and extract a task embedding based on a cropped version of
the object of interests, namely the support set. We generate synthetic tasks from
static images by augmenting the inputs to the modulators with random shift,
scale, and rotation transformations, simulating the test time condition where
the object changes appearance during the video sequence with respect to
the annotated one.

In a second phase, we train the full network on video sequences from
DAVIS to account for the recurrent components (convLSTM cells) as well
as to make use of the modulation to focus on the target object throughout
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the sequence and capture the spatio-temporal correlation among frames.
During training, multiple tasks can be obtained by the same video. Each
task, in fact, consists of segmenting K consecutive frames from a randomly
sampled video. If the video contains more than one object, a single one is
chosen randomly as the target one. To improve data efficiency, instead of
always using the first frame of the sequence as a support set, we randomly
select a frame from the video outside of the ones composing the task. Again,
we apply random augmentations to the inputs of the visual and spatial
modulators. We also employed early-stopping to prevent overfitting.

experimental setting To ensure a fair comparison between ReConvNet
and the OSMN baseline we initialize the components of our architecture
that are in common with the OSMN model with the pretrained weights as
provided by the authors. This is done for both DAVIS2016 and DAVIS2017,
to ensure that any improvement can be clearly attributed to the introduction
of a recurrent architecture.

In the first stage of training all the experiments were trained for 15 epochs
in total optimizing cross-entropy loss with Adam (Kingma and Ba, 2015),
learning rate 10−5 for the first 10 epochs, decreased to 10−6 for the last 5
epochs, and batch size 10. For the initialization of the remaining modules,
in an effort to minimize the factors of variations with respect to the baseline,
the extra channels of the visual modulator are initialized as in (Yang et al.,
2018) and, similarly, the input-to-hidden convolutions in the convLSTM
layers use the same initialization as the convolutional layers in the baseline.
Lastly, the hidden-to-hidden convolutions are initialized to be orthogonal
(Saxe et al., 2014).

We further train the full architecture on DAVIS with a lower learning rate
for the pre-trained non-recurrent component than for the recurrent ones,
namely 10−6 and 10−5 respectively. We found it beneficial to train with the
Lovasz loss (Berman et al., 2018) that directly optimizes the IoU measure.
When online fine-tuning is used, the model is trained on each test sequence
with random transformation of the first frame for 300 iterations and learning
rate 10−6 for all components.

5.4.1 Single Object Segmentation

We first evaluate our model on DAVIS2016, that focuses on single objects.
This is a hard task that allows us to validate the model and to compare with
the OSMN baseline. As shown in Table 5.1, thanks to the combination of
spatio-temporal consistency given by the convLSTM units and their features
modulation, ReConvNet outperforms OSMN by 5.4 points on the mean IoU
(J -mean) metric and places itself right below the top three models in the
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public leaderboard of the semi-supervised approaches 1 when comparing
on the average between the J and F scores.

It is important to note that the top three models perform online fine-
tuning on the first frame of the video sequence at inference time. Moreover,
OSVOS (Caelles et al., 2017) utilizes a boundary snapping approach, on-
AVOS (Voigtlaender and Leibe, 2017a) makes use of a CRF post-processing
step, and OSVOS-S (Maninis et al., 2018) incorporates instance-aware se-
mantic information from a state-of-the-art instance segmentation method to
improve its accuracy. While these methods require expensive computation
steps at inference time that are normally not needed when resorting to
features modulation, nothing prevents to pair this technique with online
fine-tuning or CRF post-processing to further boost the performance. Indeed,
with a few steps of fine-tuning at inference time ReConvNet gains 6.9 points
on the J&F -mean, only 0.5 points below onAVOS that scored 2nd in the
public leaderboard.

5.4.2 Multiple Objects Segmentation

davis2017 The most recent version of DAVIS introduces the challenging
task of multiple objects segmentation. On this dataset ReConvNet has been
trained by feeding the visual modulator with one randomly picked object
from the scene at a time and using the segmentation of the same object in the
current frame as target. Table 5.1 shows that ReConvNet adapts very well to
the multiobject task outperforming the baseline OSMN by 10.9 points on the
J&F -mean metric. Remarkably, our method also outperforms the state-of-
the-art OSVOS and onAVOS by 5.4 and 0.3 points, respectively, without the
need of expensive online fine-tuning. By also performing online fine-tuning,
the J&F -mean improves by 4.5, that is 2.2 points more than OSVOS-S,
the current state of the art in the public leaderboard on the DAVIS2017

validation set.

davis challenge 2018 We participated to the DAVIS Challenge 2018

(Caelles et al., 2018), a public competition based on the DAVIS2017 dataset
that extends it with much more challenging videos. In particular, two new
sets of sequences are provided: the test-dev set for preliminary evaluation
with unlimited submissions and the test-challenge for the final evaluation
(limited to 5 submissions). Videos from both sets complicate the segmenta-
tion task with several occlusions and many similar instances of the same
object which are hard to distinguish.

On all the experiments of the challenge, we retrained ReConvNet on both
training and validation sets. Our preliminary evaluation on the test-dev set
scored 52.7 and 62.9 on J&F -mean, respectively without and with online
fine-tuning, ranking 8-th in the test-dev public leaderboard.

1 https://davischallenge.org/davis2016/soa_compare.html

https://davischallenge.org/davis2016/soa_compare.html
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Table 5.1: Comparisons of our approach vs OSMN baseline (1st and 2nd train-
ing stages) and top-3 state-of-the-art algorithms on DAVIS2016 and
DAVIS2017 validation sets. Legend. FT: Online fine-tuning on the first
frame; M: Mean; R: Recall; D: Decay.

DAVIS2016 DAVIS2017

Method FT J&F J F J&F J F
M ↑ M ↑ R ↑ D ↓ M ↑ R ↑ D ↓ M ↑ M ↑ R ↑ D ↓ M ↑ R ↑ D ↓

OSMN (1st) (Yang et al., 2018) 7 72.2 - - - - - - - - - - - - -
OSMN (2nd) (Yang et al., 2018) 7 - 74.0 - - - - - 54.8 52.5 60.9 21.5 57.1 66.1 24.3
ReConvNet (ours) 7 78.1 79.4 89.6 7.7 76.8 86.6 7.7 65.7 62.7 70.5 21.6 68.7 77.3 21.6

OSVOS (Caelles et al., 2017) 3 80.2 79.8 93.6 14.9 80.6 92.6 15.0 60.3 56.6 63.8 26.1 63.9 73.8 27.0
onAVOS (Voigtlaender and Leibe, 2017a) 3 85.5 86.1 96.1 5.2 84.9 89.7 5.8 65.4 61.6 67.4 27.9 69.1 75.4 26.6
OSVOS-S (Maninis et al., 2018) 3 86.6 85.6 96.8 5.5 87.5 95.9 8.2 68.0 64.7 74.2 15.1 71.3 80.7 18.5
OSMN (2nd) (Yang et al., 2018) 3 - - - - - - - 60.1 - - - - - -
ReConvNet (ours) 3 85.0 85.4 95.9 8.5 84.6 93.9 12.1 70.2 66.6 75.4 28.1 73.7 83.1 29.6

On the test-challenge set ReConvNet scored 54.5 J&F -mean, and 51.8 and
57.2 J -mean and F -mean, respectively, ranking 10-th in the final DAVIS
Challenge 2018 evaluation. This is an encouraging result considering that no
online fine-tuning was employed. Indeed by adding some fine-tuning steps
at inference time it is reasonable to expect a performance boost similar to
the one consistently witnessed in the previous experiments. Unfortunately
we could not submit the results with the fine-tuned model for lack of time.

5.5 results analysis
We conducted a suite of experiments designed to evaluate the importance of
each component of ReConvNet, in parallel to the usual hyper-parameters
search. For simplicity, most of the experiments have been run first on
DAVIS2016, which allowed to iterate faster over the several configurations
thanks to its reduced size. Once we found good candidate configurations,
we applied and tested them on the more complex multiple objects task. In
this analysis we focus on the second stage of training, considering only the
DAVIS dataset.

learning rate We investigated the impact of the learning rate in two
configurations: i) using the same value (10−5) for all ReConvNet blocks, ii)
using a lower (10−6) learning rate for the blocks that have already been pre-
trained on the COCO dataset to encourage a more impactful optimization
on the recurrent layers. We found that using a lower learning rate for the
non-recurrent blocks works better leading to an improvement of ≈ 2.8 points
on the J -mean metric that went from 75.29 to 78.08 points.

segmentation loss In order to enforce the network to use the temporal
information coming from the earlier frames, the loss is computed considering
only the prediction of the last frame. We also tested a different configurations
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in which the segmentation is predicted for each frame in the sequence and
we minimized the sum over the loss computed on each frame. In this case
we experimented a decay of performance of ≈ 1.4 points on the J -mean
and ≈ 2 points on the F -mean.

For our basic experiments we adopted the balanced cross-entropy loss
proposed for segmentation by (Caelles et al., 2017), the same used in OSMN,
to ensure a fair comparison. Notably, we report a 4.81 points of improvement
on the J -mean metric that can be attributed solely to the proposed recurrent
components.

Starting from the basic experiment, a slight improvement can be achieved
by training the best configuration with the Lovász loss (Berman et al., 2018),
that is specifically designed to optimize the IoU metric. This allows us to
obtain our best result on the J -mean metric which scores 79.43 without
fine-tuning. In addition, we found that the Lovász loss exhibit a faster
convergence, reaching the best performance in only 17 training epochs as
opposed to the 39 epochs needed in the cross-entropy case. The advantages
of the Lovász loss can be appreciated even more on the multiple object task.
On the DAVIS2017 validation set the cross-entropy trained model scores 59.1
points on the J&F -mean metric, which is already 4.3 points better than
OSMN, while the Lovász one obtains a further boost of 6.6 accuracy points,
scoring a total of 65.7 points.

recurrent visual modulation In order to evaluate the effect of guid-
ing the recurrent layers via the visual modulator (i.e., in addition to the
VGG layers already modulated by OSMN) we compared the performance of
two networks trained with the same hyperparameters, only one of which
encompassing the convLSTM’s modulation. The performance is marginally
worse when the visual modulator is not used, specifically 78.55 J -mean and
76.77 F -mean versus 78.81 and 77.26 respectively.

pre-training Supervised and semi-supervised models that implicitly, or
explicitly, make use of semantic information, need much more data than the
one available in the DAVIS dataset in order to generalize well on the video
object segmentation task. As it can be expected, the problem is exacerbated
by models with high capacity, and even more by those that exploit a visual
modulator to tackle semi-supervised segmentation. As shown in Yang et al.
(2018) the set of parameters Γ, produced by the Visual Modulator, pushes the
model to learn a semantic mapping in an embedding space where visually
similar objects are close in `2 distance. Learning this mapping requires
a large enough amount of diverse examples. MSCOCO (Lin et al., 2014)
provides a wide range of classes and intra-class variations resulting in a
very well suited pre-training dataset for DAVIS. Furthermore, the single
frame pre-training procedure proved to be an essential proxy to bootstrap
the temporal-consistent segmentation. Indeed, the DAVIS dataset contains



5.5 results analysis 92

Figure 5.2: Importance of Visual and Spatial Modulators. This histogram com-
pares the evaluation scores of a trained model (green) respectively with
the same model when the visual guide ground truth is given (yellow)
and when an oracle on the spatial location is available (red). The results
of this study show how a precise localization is more valuable for the
network than the appearance information about the object.

only a few examples for most semantic classes, making it very easy for the
network to overfit, failing to generalize to unseen instances of the same
classes or to completely different objects. Indeed, when training directly on
DAVIS, without pre-training, the model performed poorly, a clear indication
that this stage of training is essential to achieve competitive results.

importance of the localization Finally, we investigated the contri-
bution of each modulator network on the quality of the segmentation by
running two tests at inference time. Both the Visual and the Spatial Mod-
ulator are provided with the ground truth of the previous frame by an
oracle. Note that, normally, the visual modulation is computed only once
for the entire sequence, where the VM receives as input the first frame
cropped around its segmentation. We studied the impact of changes in the
appearance of the object of interest by recomputing the coefficients of the
visual modulation at each time frame, given the oracle. Moreover, the Spatial
Modulator uses the ground truth segmentation rather than the previous
prediction to generate the next spatial guide, providing the exact location of
the object in the previous frame. The results of this study are shown in Fig-
ure 5.2. As could be expected both the configurations improve our results
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Figure 5.3: Importance of a strong spatial prior. Top: performance of ReConvNet
on a hard sequence of DAVIS2016. Comparison of a trained model
(blue) with the case when the VM (green) and the SM (red) receive as
input from an oracle the true segmentation of the object in the previous
frame. The prior on the actual position of the object proved to be more
important than compensating for changes in its appearance. Bottom:
Predictions and inputs for the failing case analyzed in the plot above:
ReConvNet is not able to track the object.

consistently. It is interesting to notice that having a precise object localization
is more effective in average than knowing the ground truth appearance
of the object of interest. This applies to those videos in which the object
significantly changes its appearance over time: the visual guide given in the
first frame is not very informative for the segmentation network while it is
more important to have a stronger spatial prior. Section 5.5 shows the results
of the two inferences on a specific video of the DAVIS2016 validation set. In
this case the object moves very fast between frames so that the localization
has to be very precise to track the object correctly and, if this is not the case,
the visual modulator is not able to guide the segmentation network even if
the ground truth appearance of the object is known. This suggests that the
network relies heavily on the spatial bias imposed by the SM and is not able
to recover when this is not accurate.
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5.6 conclusion
We presented ReConvNet, a powerful and efficient recurrent convolutional
model to perform semi-supervised video object segmentation. The model
is able to learn spatio-temporal features that self-adapt to focus on the
object of interest without the need of extra fine-tuning at inference time.
ReConvNet outperforms the baseline by a considerable margin, proving the
effectiveness of incorporating temporal consistency into the model. Our
results reinforce the conjecture that features modulation is a valid approach
to semi-supervised video object segmentation. We plan to perform a more
in-depth analysis of the interaction between the temporal components and
the features modulation, since we believe it is crucial to better understand
the potential of the proposed model.
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(a) drift

(b) libby

(c) scooter

(d) soapboax

Figure 5.4: Single Object. The recurrent components of our model (red) play an
important role in ensuring a better temporal consistency of the segmen-
tation masks, resulting in more temporally coherent and cleaner masks
than the OSMN baseline (white).
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RGB Ground Truth OSVOS-S ReConvNet (ours) with FTReConvNet (ours) 

Figure 5.5: Multiple Objects. A comparison of the state of the art OSVOS-S based
on fine-tuning with both the basic ReConvNet model and the fine-tuned
one. It is possible to appreciate that ReConvNet shows a good level
of accuracy without the need of an expensive online finetuning that,
however, helps in videos with a substantial number of interacting objects.
This is exemplified by the first row, it can be seen that finetuning allows
to better discriminate between several instances of the same object with
higher precision.
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In this thesis, we presented advances in the field of Representation Learning
for visual data with a focus on iterative and recurrent processing.

Input-Output Stable Architectures for Iterative Computation

In Chapter 3 we presented a theoretical analysis of Residual Networks from a
dynamical system perspective, reinterpreting these architectures as forward
Euler discretization of ODEs. We focused on the stability properties of these
systems to construct NAIS-Net, a cascade of stable architectures that can be
unrolled until convergence to an equilibrium point, showing that they can
perform iterative inference with shared weights.

Our proposed parametrization for fully-connected and convolutional
layers is an efficient way to ensure the stability of the system. At each
step of gradient descent, the network’s weights are projected back to the
stability region if the stability constraint is not satisfied. By imposing a
hard constraint, we can ensure convergence when the system is unrolled.
However, a hard reprojection could hinder the representational power of the
network and potentially be hard to optimize.

Anil et al. (2019) observed that it is challenging to achieve similar per-
formance as unconstrained networks while provably enforcing a Lipschitz
constraint, identifying gradient attenuation issues during training. To scale
NAIS-Net to more challenging tasks such as ImageNet (Deng et al., 2009)
classification could require relaxing the stability constraint introducing
penalty terms (Gulrajani et al., 2017; Miyato et al., 2018; Yoshida and Miyato,
2017) to trade-off the performance on the task and the convergence guar-
antees of the network, or to use more versatile constrained optimization
techniques such as Augmented Lagrangian (Rocha and Fernandes, 2010;
Wang and Spall, 2003).

An important characteristic of NAIS-Net is that the input-output mapping
of each block is guaranteed to be bounded by a constant, namely, it is Lips-
chitz. There has been much interest in training neural networks with known
upper bounds on their Lipschitz constants as they can provide provable ro-
bustness against adversarial examples (Cisse et al., 2017; Tsuzuku et al., 2018)
and improve generalization bounds (Sokolić et al., 2017). In Section 3.6.2
we showed that NAIS-Net has, indeed, a better generalization gap in image
classification tasks on CIFAR-10/100. The degree to which NAIS-Net is
robust to adversarial perturbations remains to be tested in future work.
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Another exciting area of research is investigating the performance of NAIS-
Net as a generative model. The iterative nature of residual architectures can
be leveraged to construct reversible architectures that perform well in both
discriminative and generative settings (Gomez et al., 2017; Jacobsen et al.,
2018). For instance, Behrmann et al. (2019) enforce the invertibility of ResNets
by introducing a normalization term during training such that the layers
are contractive, namely, the Lipschitz constant is less than one. Similarly,
it would be interesting to explore whether it is possible to construct an
invertible version of NAIS-Net to learn flow-based (Rezende and Mohamed,
2015) generative models.

Learning Recurrent Representations for event-based data

In Chapter 4 we proposed Matrix-LSTM, a novel representation for event-
based data. Learning effective representation to replace hand-designed
features allowed machine learning-based methods to achieve impressive
performance on many vision tasks. As event cameras are slowly but steadily
gaining popularity in the context of robotics, autonomous driving, and drone
navigation, it is becoming increasingly important to provide these systems
with the same capabilities as their frame-based counterparts while retain-
ing the advantages of event representations. Event cameras, in fact, offer
significant advantages over conventional RGB cameras, such as a very high
dynamic range, no motion blur, and latency in the order of microseconds.
However, the performance of event-based systems on many vision tasks is
still low compared to conventional frame-based solutions, warranting the
development of new methods to process sparse and asynchronous data.

We designed a mechanism to efficiently apply a Long Short-Term Memory
(LSTM) network as a convolutional filter over the 2D stream of events
produced by event-based cameras. The LSTM cell learns to accumulate
pixel information through time and build 2D event representations. The
reconstruction mechanism is end-to-end differentiable, which allows training
it jointly with state-of-the-art frame-based architectures in order to learn
frame reconstructions explicitly tailored for the task at hand. We showed
that the proposed mechanism can be successfully used to build static and
dynamic representations for object recognition and optical flow prediction.
As a future line of research, we plan to explore the use of Matrix-LSTM
for more complex tasks such as gray-scale frame reconstruction (Rebecq
et al., 2019), ego-motion, and depth estimation (Ye et al., 2018; Zhu et al.,
2019a). We are currently testing Matrix-LSTM on object detection, using the
recently released dataset by Prophesee (Perot et al., 2020). Images have been
collected at high spatial resolution posing the important challenge of scaling
Matrix-LSTM’s accumulation mechanism to deal with thousands of events
per second, balancing efficiency and performance. One interesting future
direction is to investigate aggregation or pooling strategies for the events
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in the same receptive field, enabling the use of larger kernels to improve
efficiency.

One-Shot Video Object Segmentation with Conditional Modulations

In Chapter 5 we focused on the problem of learning how to adapt to new
tasks and developed a model for One-Shot Video Object Segmentation.
Semi-supervised video object segmentation models are critical components
of multi-object tracking systems, especially in robotics applications. For
example, it is often desirable for a robot to learn rapidly and on the fly the
appearance of a specific person or object it has to follow or interact with.
This can be extended to multiple people/objects tracking, where the model
should be fast-adapted to a particular instance on the scene. Learning how
to adapt to new appearances is also crucial for object-robot interactions,
where a robot should grasp or manipulate a new object.

We cast the problem in the meta-learning setting, producing the weights of
a “fast”’ segmentation network via a secondary “slow” network conditioned
on the object of interest. We show the importance of modeling the temporal
correlations across frames by enhancing a base convolutional model with
recurrent convLSTM cells.

The proposed approach showed promising results both in single-object
and multi-object segmentation tasks, proving capable of adapting to new
objects by observing a single annotated frame. However, when multiple
instances of the same objects are present in the scene, modulation does
not seem to be enough for adaptation, requiring extra steps of fine-tuning
after training. More powerful adaptation capabilities can also be obtained by
introducing recurrent units into the modulator networks, although recurrent
modulations are usually sensitive to hyper-parameters and unstable during
training (Ha et al., 2017). Another approach would be to integrate modula-
tion networks and gradient-based meta learning (Finn et al., 2017) into the
same training step to learn task-specific initializations of the weights that
require only a few fine-tuning updates to yield optimal performance. Other
improvements could be obtained by introducing better task embeddings.
Currently, the modulation network processes the cropped annotated frame
rescaled to a fixed size. This could introduce artifacts and deformations.
A multi-scale task embedding that preserves the object’s details and its
aspect ratio would be helpful for producing accurate segmentation of small
instances.

Finally, we showed the importance of having a precise localization of the
object in the frame, when the objects are partially occluded or in uncommon
configurations, absolutely and/or in relation to other objects. One of the
future efforts will be to investigate the use of more accurate spatial priors
considering explicit motion information such as optical flow (Zhu et al.,
2018b), and the integration with state-of-the-art detection and tracking
systems (He et al., 2017; Lin et al., 2017; Redmon and Farhadi, 2018).



Part I

A P P E N D I X



A DY N A M I C A L S Y S T E M S A N D S TA -
B I L I T Y B A C KG R O U N D

a.1 linear algebra elements

Notation

• ‖ · ‖ is used to denote a suitable matrix norm. This norm will be
characterized specifically on a case by case basis. The same norm will
be used consistently throughout definitions, assumptions and proofs.

• Ai• is used to denote the i-th row of a matrix A.

Lemma 2. (Eigenvalue shift) Consider two matrices A ∈ Cn×n, and C = cI+A
with c being a complex scalar. If λ is an eigenvalue of A then c + λ is an eigenvalue
of C.

Proof. Given any eigenvalues λ of A with corresponding eigenvector v we
have that:

λv = Av⇔(λ + c)v
= λv + cv
= Av + cv = Av + cIv
= (A + cI)v = Cv

(A.1)

a.2 stability definitions for tied weights
This section provides a summary of definitions borrowed from control
theory that are used to describe and derive our main result. The following
definitions have been adapted from Gallieri (2016) and refer to the general
dynamical system:

x+ = f (x, u). (A.2)

Since then stability of a cascade of dynamical systems is stable if and only if
all its blocks are stable (Khalil, 2014), we can simply focus on stability of the
unroll of a single block.
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Relevant Sets and Operators

Denote the slope of the activation function vector, σ(∆x(k)), as the diagonal
matrix, σ

′
(∆x(k)), with entries:

σ
′
ii(∆x(k)) =

∂σi(∆x(k))
∂∆xi(k)

. (A.3)

where ∆x(k) is the argument of the activation function σ(·).
The following definitions will be used later to obtain the stability results,

where 0 < σ� 1:

Pi = {(x, u) ∈ Rn ×Rm : σ
′
ii(x, u) ≥ σ},

P = {(x, u) ∈ Rn ×Rm : σ
′
ii(x, u) ≥ σ, ∀i},

Ni = P ∪ {(x, u) ∈ Rn ×Rm : σ
′
ii(x, u) ∈ [0, σ)},

N = {(x, u) ∈ Rn ×Rm : σ
′
ii(x, u) ∈ [0, σ), ∀i},

(A.4)

In particular, the set P is such that the activation function is not saturated
as its derivative has a non-zero lower bound.

Non-autonomuous Behaviour Set

The following set will be consider throughout the chapter.

Definition A.2.1. (Non-autonomous behaviour set) The set P is referred to as the
set of fully non-autonomous behaviour in the extended state-input space, and its
set-projection over x, namely,

πx(P) = {x ∈ Rn : ∃u ∈ Rm, (x, u) ∈ P}, (A.5)

is the set of fully non-autonomous behaviour in the state space. This is the only set
in which every output dimension of the ResNet with input skip connection can be
directly influenced by the input, given a non-zero1 matrix B.

Note that, for a tanh activation, then we simply have that P ⊆ Rn+m (with
P → Rn+m for σ

′ → 0). For a ReLU activation, on the other hand, for each
layer k we have:

P = P(k) = {(x, u) ∈ Rn ×Rm : A(k)x + B(k)u + b(k) > 0}. (A.6)

a.2.1 Describing Functions

The following functions are instrumental to describe the desired behaviour
of the network output at each layer or time step.

1 The concept of controllability is not introduced here. In the case of deep networks we just
need B to be non-zero to provide input skip connections. For the general case of time-series
identification and control, please refer to the definitions in Sontag (1998).
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Definition A.2.2. (K-function) A continuous function α : R≥0 → R≥0 is said to
be a K-function (α ∈ K) if it is strictly increasing, with α(0) = 0.

Definition A.2.3. (K∞-function) A continuous function α : R≥0 → R≥0 is said
to be a K∞-function (α ∈ K∞) if it is a K-function and if it is radially unbounded,
that is α(r)→ ∞ as r → ∞.

Definition A.2.4. (KL-function) A continuous function β : R2
≥0 → R≥0 is said

to be a KL-function (β ∈ KL) if it is a K-function in its first argument, it is
positive definite and non- increasing in the second argument, and if β(r, t)→ 0 as
t→ ∞.

Invariance, Stability and Robustness

The following stability definitions are given for time-invariant systems, that
correspond to the unrolling of deep residual networks with tied (shared)
weights. The same definitions can also be generalised to the case of untied
weights, or time-varying systems by considering worst case conditions over
the layer (time) index k. In this case the properties are said to hold uniformly
for all k ≥ 0. See Appendix B in the appendix for more details.

Definition A.2.5. (Positively Invariant Set) A set X ⊆ Rn is said to be positively
invariant (PI) for a dynamical system under an input u ∈ U ⊆ Rn if

f (x, u) ∈ X , ∀x ∈ X . (A.7)

Definition A.2.6. (Robustly Positively Invariant Set) The set X ⊆ Rn is said to
be robustly positively invariant (RPI) to additive input perturbations w ∈ W if
X is PI for any input ũ = u + w, u ∈ U , ∀w ∈ W .

Definition A.2.7. (Asymptotic Stability) The system Eq. (A.2) is called Globally
Asymptotically Stable around its equilibrium point x if it satisfies the following two
conditions:

1. Stability. Given any ε > 0, ∃δ1 > 0 such that if ‖x(t0)− x‖ < δ1, then
‖x(t)− x‖ < ε, ∀t > t0.

2. Attractivity. ∃δ2 > 0 such that if ‖x(t0)− x‖ < δ2, then x(t) → x as
t→ ∞.

If only the first condition is satisfied, then the system is globally stable. If both
conditions are satisfied only for some ε(x(0)) > 0 then the stability properties hold
only locally and the system is said to be locally asymptotically stable.

Local stability in a PI set X is equivalent to the existence of a KL-function β

and a finite constant δ ≥ 0 such that:

‖x(k)− x‖ ≤ β(‖x(0)− x‖, k) + δ, ∀x(0) ∈ X , k ≥ 0. (A.8)

If δ = 0 then the system is asymptotically stable. If the positively-invariant set is
X = Rn then stability holds globally.
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Define the system output as y(k) = ψ(x(k)), where ψ is a continuous,
Lipschitz function. Input-to-Output stability provides a natural extension of
asymptotic stability to systems with inputs or additive uncertainty2.

Definition A.2.8. (Input-Output (practical) Stability) Given an RPI set X , a
constant nominal input u and a nominal steady state x(u) ∈ X such that y = ψ(x),
the system Eq. (A.2) is said to be input-output (practically) stable to bounded
additive input perturbations (IOpS) in X if there exists a KL-function β and a
K∞ function γ and a constant ζ > 0:

‖y(k)− y‖ ≤ β(‖y(0)− y‖, k) + γ(‖w‖) + ζ, ∀x(0) ∈ X , (A.9)
u = u + w, u ∈ U , ∀w ∈ W , ∀k ≥ 0.

Definition A.2.9. (Input-Output (Robust) Stability) Given an RPI set X , a
constant nominal input u and a nominal steady state x(u) ∈ X such that y = ψ(x),
the system Eq. (A.2) is said to be input-output (robustly) stable to bounded
additive input perturbations (IOS) in X if there exists a KL-function β and a
K∞ function γ such that:

‖y(k)− y‖ ≤ β(‖y(0)− y‖, k) + γ(‖w‖), ∀x(0) ∈ X , (A.10)
u = u + w, u ∈ U , ∀w ∈ W , ∀k ≥ 0.

Definition A.2.10. (Input-Output incremental Stability) Given a pair of initial
conditions {x(0), x(0)} and constant inputs {u, u}, with y = x, system Eq. (A.2)
is said to be Globally input-output incrementally stable (δ-IOS) if there exists a
KL-function β and a K∞ function γ such that:

‖y(k)− y(k)‖ ≤ β(‖y(0)− y(0)‖, k) + γ(‖u− u‖), (A.11)
∀{x(0), x(0)} ∈ R2n, {u, u} ∈ U 2, ∀k ≥ 0.

2 Here we will consider only the simple case of y(k) = x(k), therefore we can simply use
notions of Input-to-State Stability (ISS).



B N A I S - N E T W I T H U N T I E D W E I G H T S

b.1 proposed network with untied weights
The proposed network architecture with input skip connections and the
robust stability results can be extended to the untied weight case. In particular,
a single NAIS-Net block is analysed, where the weights are not shared
throughout the unroll.

b.1.1 Fully Connected Layers

Consider the following ResNet with input skip connections and untied
weights:

x(k + 1) = f (x(k), u, k)

= x(k) + hσ

(
A(k)x(k) + B(k)u + b(k)

)
,

(B.1)

where k indicates the layer, u is the input data, h > 0, and f is a continuous,
differentiable function with bounded slope. The activation operator σ is a
vector of (element-wise) instances of a non-linear activation function. In the
case of tied (shared) weights, the DNN Eq. (B.1) can be seen as a finite unroll
of an RNN, where the layer index k becomes a time index and the input is
passed through the RNN at each time steps. This is fundamentally a linear
difference equation also known as a discrete time dynamic system. The same
can be said for the untied case with the difference that here the weights of
the RNN will not be the same at each time step, inducing a time-varying
dynamical system.

b.1.2 Convolutional Layers

For convolutional networks, the proposed layer architecture can be extended
as:

X(k + 1) = F(X(k), U, k)

= X(k) + hσ

(
C(k) ∗ X(k) + D(k) ∗U + E(k)

)
,

(B.2)

where X(i)(k), is the layer state matrix for channel i, while U(j), is the layer
input data matrix for channel j (where an appropriate zero padding has
been applied) at layer k. An equivalent representation to Eq. (B.2), for a given
layer k, can be computed in a similar way as done for the tied weight case in
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Appendix D.2. In particular, denote the matrix entries for the filter tensors
C(k) and D(k) and E(k) as follows: C(c)

(i) (k) as the state convolution filter

from state channel i to state channel c, and D(c)
(j) (k) is the input convolution

filter from input channel j to state channel c, and E(c)(k) is a bias matrix for
the state channel c.

Once again, convolutional layers can be analysed in a similar way to
fully-connected layers, by means of the following vectorised representation:

x(k + 1) = x(k) + hσ
(
A(k)x(k) + B(k)u + b(k)

)
. (B.3)

By means of the vectorised representation Eq. (B.3), the theoretical results
proposed in this section will hold for both fully connected and convolutional
layers.

b.2 non-autonomous set
Recall that, for a tanh activation, for each layer k we have a different set
P(k) ⊆ Rn+m (with P(k) = Rn+m for ε→ 0). For ReLU activation, we have
instead:

P = P(k) = {(x, u) ∈ Rn ×Rm : A(k)x + B(k)u + b(k) > 0}. (B.4)

b.3 stability definitions for untied weights
For the case of untied weights, let us consider the origin as a reference
point (x = 0, u = 0) as no other steady state is possible without assuming
convergence for A(k), B(k). This is true if u = 0 and if b(k) = 0, ∀k ≥ k ≥ 0.
The following definition is given for stability that is verified uniformly with
respect to the changing weights:

Definition B.3.1. (Uniform Stability and Uniform Robustness) Consider x =
0 and u = 0. The network origin is said to be uniformly asymptotically or
simply uniformly stable and, respectively, uniformly practically stable (IOpS),
uniformly Input-Output Stable (IOS) or uniformly incrementally stable (δ-IOS)
if, respectively, Definition A.2.7, A.2.8, A.2.9 and A.2.10 hold with a unique set
of describing functions, β, γ, ζ for all possible values of the layer specific weights,
A(k), B(k), b(k), ∀k ≥ 0.
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b.4 jacobian condition for stability
The state transfer Jacobian for untied weights is:

J(x(k), u, k) =
∂ f (x(k), u, k)

∂x(k)
= I + hσ

′
(∆x(k))A(k). (B.5)

The following assumption extends our results to the untied weight case:

Condition 2. For any σ
′
> 0, the Jacobian satisfies:

ρ = sup
(x,u)∈P

sup
k

ρ (J(x(k), u, k)) < 1, (B.6)

where ρ(·) is the spectral radius.

Condition Eq. (B.6) can be enforced during training for each layer using
the procedures presented in the paper.

b.5 stability result for untied weights
Recall that we have taken the origin as the reference equilibrium point,
namely, x = 0 is a steady state if u = 0 and if b(k) = 0, ∀k ≥ k ≥ 0. Without
loss of generality, we will assume b(k) = 0, ∀k and treat u as a disturbance,
u = w, for the robust case. The following result is obtained:

Theorem 4. (Uniform stability for untied weights)

If Condition 2 holds, then NAIS–net with untied weights and with tanh activation
is Globally Uniformly Stable. In other words there is a set X that is an ultimate
bound, namely:

x(k)→ X ⊆ Rn, ∀x(0) ∈ X ⊆ Rn. (B.7)

The describing functions are:

β(‖x‖, k) = ρ k‖x‖, γ(‖w‖) = h
‖B‖

(1− ρ )
‖w‖,

B = sup
k
‖B(k)‖, ρ < 1,

(B.8)

where ‖ · ‖ is the matrix norm providing the tightest bound to the left-hand side of
Eq. (B.6), where ρ is defined.

In particular, we have:

1. If the activation is tanh then the network is Globally Uniformly Input-Output
robustly Stable for any input perturbation w ∈ W = Rm. Under no input
actions, namely if u = 0, then the origin is Globally Asymptotically Stable. If
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u = w ∈ W whereW is the norm ball of radius µ, then the following set is
RPI:

X =

{
x ∈ Rn : ‖x‖ ≤ r =

h‖B‖
1− ρ

µ

}
. (B.9)

2. If the activation is ReLU then the network is Globally Uniformly Incremen-
tally IO Stable for input perturbations in a compactW ⊂ Rm.

The describing function are given by Eq. (B.8) and the constant term is
ζ = r

(1−ρ )
, where r is the norm ball radius for the initial condition, namely,

X = {x ∈ Rn : ‖x(0)− x(0)‖ ≤ r}. (B.10)

This set is positively invariant under no input action.

If u = w ∈ W where W is the norm ball of radius µ, then the state
delta-converges to the following ultimate bound:

X =

{
x ∈ Rn : ‖x− x‖ ≤ ζ + h

‖B‖µ
(1− ρ )

}
. (B.11)

Note that, if the network consists of a combination of fully connected and
convolutional layers, then a single norm inequality with corresponding β

and γ can be obtained by means of matrix norm identities. For instance,
since for any norm we have that ‖ · ‖q ≤ α‖ · ‖p, with α > 0, one could
consider the global describing function β(·, ·) = αβp(·, ·). Similarly for γ.



C S TA B I L I T Y P R O O F S

One way to assess the stability of a system is by using the so-called Lyapunov
indirect method (Khalil, 2014; Sontag, 1998; Strogatz, 2015), that consists in
the analysis of the linearized system around an equilibrium. If the linearized
system is stable, then the original system is also stable.

This also applies for linearizations around all possible trajectories if there
is a single equilibrium point, as in our case. In the following, the bias term
is sometimes omitted without loss of generality (one can add it to the
input). Note that the proofs are also valid for RNNs with varying input
sequences u(k), with asymptotic results for converging input sequences,
u(k)→ u. Recall that y(k) = x(k) by definition and let us consider the case
of b(k) = 0, ∀k, without loss of generality as this can be also assumed as
part of the input.

c.1 stability proof for untied weights
The proposed results make use of the 1-step state transfer Jacobian Eq. (B.5).
Note that this is not the same as the full input-to-output Jacobian, for
instance as the one defined in Duvenaud et al. (2014). The full Jacobian
will also contain the input to state map, given by Eq. (C.2), which does not
affect stability. The input to state map will be used later on to investigate
robustness as well as the asymptotic network behaviour. First, we will focus
on stability, which is determined by the 1-step state transfer map. For the
sake of brevity, we denote the layer t state Jacobian from Eq. (B.5) as:

J(t) = I + hσ
′
(∆x(t))A(t), ∀t ≥ 0.

Define the discrete time convolution sum as:

yu(k) =
k−1

∑
t=0

H(k− t)u(t), k > 0, yu(0) = 0.

The above represent the forced response of a linear time invariant (LTI) system,
namely the response to an input from a zero initial condition, where H is
the (in the LTI case stationary) impulse response.

Conversely, the free response of an autonomous system from a non-zero
initial condition is given by:

yx0(k) =

(
k−1

∏
t=0

J(t)

)
x(0).
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The free response tends to zero for an asymptotically stable system.
Considering linearized dynamics allows us to use the superposition principle,

in other words, the linearized system response can be analysed as the sum
of the free and forced response:

y(k) = yx0(k) + yu(k).

Note that this is not true for the original network, but just for its linearization.
For the considered network, the forced response of the linearized (time

varying) system to an impulse at time t, evaluated at time k, is given by:

H(k, t) =

hσ
′
(∆x(t))B(t), if k = t + 1

hσ
′
(∆x(t))B(t)

(
∏k−2

l=t J(l + 1)
)

, ∀k ≥ t + 2
(C.1)

Therefore, the forced response of the linearized system is:

yu(k) = hσ
′
(x(k− 1), u(k− 1))B(k− 1)u(k− 1)

+
k−2

∑
t=0

(
k−2

∏
l=t

J(l + 1)

)
hσ
′
(∆x(t))B(t)u(t)

=
k−1

∑
t=0

H(k, t)u(t). (C.2)

Note that:

‖H(k, t)‖ ≤ h sup
(x,u)∈P , j

‖J(x, u, j)‖(k−t−1)‖B(j)‖, ∀k, t ≥ 0

since ‖σ′‖ ≤ 1.
To prove our results, we will use the fact that the network with tanh or

ReLU activation is globally Lipschitz, and that the activation functions have
Lipschitz constant M = 1 with respect to any norm. This follows from the
fact that:

sup
∆x∈Rn

max
i
|σ′ii(∆x)| = 1.

This means that the trajectory norm can be upper bounded inside P ⊆
Rn ×Rm by means of:

‖ f (x, u, k)‖ ≤ sup
(x,u)∈P

sup
k
‖J(x, u, k)‖‖x‖+ sup

(x,u)∈P
sup

k

k−1

∑
t=0
‖H(k, t)‖‖u‖

(C.3)
For a non-zero steady state x or a trajectory x(k) starting from a different
initial condition x(0), we can define the error function:

e(k) = x(k)− x(k), (C.4)
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From the fact that the network equation is globally Lipschitz and that
the steady states satisfy f (x, u) = x, we can use a single statement to show
convergence for both architectures, respectively, with respect to a steady-state
for tanh or to any other trajectory for ReLU. We will show that the function
that maps e(k) into e(k + 1) is also Lipschitz for all k:

‖e(k + 1)‖ =
= ‖ f (x, u)− x‖ = ‖ f (x, u)− f (x, u)‖
= ‖x + hσ(Ax + Bu + b)− x− hσ(Ax + Bu + b)‖

≤ sup
(x,u)∈P

sup
t

(
‖I + hσ

′
(∆x(t))A‖‖x− x‖

)
+ h‖Bu− Bu + b− b‖

= sup
(x,u)∈P

sup
t

(
‖I + hσ

′
(∆x(t))A‖

)
‖x− x‖.

(C.5)
Note that, at the next step, we also have:

‖e(k + 2)‖ = ‖ f ( f (x, u), u)− x‖ = ‖ f ( f (x, u), u)− f ( f (x, u), u)‖

≤ sup
(x,u)∈P

sup
t

(
‖I + hσ

′
(∆x(t))A‖

)
‖ f (x, u)− f (x, u)‖+ h‖Bu− Bu + b− b‖

= sup
(x,u)∈P

sup
t

(
‖I + hσ

′
(∆x(t))A‖

)
‖ f (x, u)− f (x, u)‖

= sup
(x,u)∈P

sup
t

(
‖I + hσ

′
(∆x(t))A‖

)
‖ f (x, u)− x‖

≤ sup
(x,u)∈P

sup
t

(
‖I + hσ

′
(∆x(t))A‖2

)
‖x− x‖.

(C.6)
and therefore, by induction it also follows that the trajectory at time k satisfies:

‖ ◦k
t=0 f (x, u)− x‖ = ‖ f ◦ f ◦ . . . f ( f (x, u))− x‖

≤
(

sup
(x,u)∈P

sup
t
‖I + hσ

′
(∆x(t))A‖

)k

‖x− x‖ = ρ k‖x− x‖ (C.7)

By definition of P , from the above we have that, for tanh activation, the
network trajectory with respect to an equilibrium point x, can be upper
bounded in norm by the trajectory of the linearization while in P . In the
limit case of σ

′ → 0 the bound becomes global as P → Rn ×Rm. On the
other hand, for ReLU activation the upper bounds are valid only locally, in
P iself. These considerations will be used to prove our main results.

Proof. (Theorem 4: Main result for untied weights)
In the untied weight case the network does not admit non-zero steady-

states, as the matrices A(k) and B(k) are not assumed to converge with
increasing k. Let us therefore consider the origin as our reference point,
namely, (x = 0, u = 0). Therefore, for the robust results we will consider the
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input u = w. The proof can now proceed by norm bounding the superposi-
tion of the free and forced response. Recall that y(k) = x(k) by definition
and consider b(k) = 0, ∀k, without loss of generality. Now, if (x, u) ∈ P ,
for the linearized system we have the following:

‖x(k)− x‖ = ‖e(k)‖

≤ sup
(x,u)∈P

sup
j
‖J(x, u, j)‖k‖e(0)‖+

k−1

∑
t=0
‖H(k, t)‖ ‖w(t)‖

≤ ρ k‖e(0)‖+ h
k−1

∑
t=0

ρ (k−t−1) sup
j
‖B(j)‖‖w‖

≤ β(‖e(0)‖, k) + γ(‖w‖).

(C.8)

In the above, we have defined:

β(‖e‖, k) = ρ k‖e‖,

γ(‖w‖) = h
‖B‖

(1− ρ )
‖w‖,

B = sup
j
‖B(j)‖, ρ < 1.

(C.9)

In Eq. (C.8), we have used the fact that if ρ(J) < 1 then there exist a suitable
matrix norm ‖ · ‖ and a constant ρ < 1 such that ‖J‖ ≤ ρ . This stems
directly from Theorem 5.6.12, page 298 of Horn and Johnson, 2012. In our
case, ρ < 1 is verified when (x, u) ∈ P since, from Condition 2, we have that
sup(x,u)∈P supj ρ (J(x, u, j)) < 1. Outside the region P , however, we need to
consider the specific activation functions: for tanh, the region P can be taken
to be any subset of the reals, therefore being outside this set as P → Rn×m

contradicts asymptotic stability. 1 For ReLU activation, being outside P
means that (at least part of) the system is autonomous and therefore the
network is simply stable as well as incrementally Input-Output practically
stable.

Theorem statements are proven as follows:

1. Note that, the condition (x(t), u) 6∈ P is only possible for ReLU acti-
vations, since for tanh activation we have that P → Rn+m for σ

′ → 0
and this would contradict stability result Eq. (C.8) inside the set. This
means that Eq. (C.8) holds globally and therefore the considered net-
work with tanh activations is Input-Output stable for a real-valued
input u. Same considerations apply for the robust case with an additive
perturbation w ∈ Rm.

1 Note that, when using tanh, in the limit case of σ
′
= 0, P = Rn+m the system becomes

simply stable. This is a small subtlety in our result for tanh, which could be defined as almost
global or more formally valid in every bounded subset of reals. However, from the steady-state
analysis (to follow) and the contraction result we can see that σ

′
= 0 is highly unlikely to

happen in practise.
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In order to show the existence of a robust positively invariant set,
consider the candidate set:

X =

{
x ∈ Rn : ‖e‖ = ‖x− x‖ ≤ r =

r
1− ρ

}
, (C.10)

and the disturbance set:

W = {w ∈ Rm : ‖w‖ ≤ µ}. (C.11)

Then from the IOS inequality we have that, if x(0) ∈ X and w ∈ W ,
the bound µ can be computed so that X is RPI. To construct the bound,
it is sufficient to have the following condition to hold ∀k ≥ 0:

‖e(k)‖ ≤ ρ k‖e(0)‖+ h‖B‖
(1− ρ )

‖w‖ ≤ r, ∀w : ‖w‖ ≤ µ. (C.12)

The above is verified ∀k ≥ 0 if the bound µ satisfies by the following
sufficient condition when ‖e(0)‖ ≥ r:

‖e(k)‖ ≤ ρ (k−1)‖e(0)‖+ ρ (k−1)(ρ − 1)‖e(0)‖+ h‖B‖
(1− ρ )

‖w‖

≤ ρ (k−1)‖e(0)‖+ (ρ − 1)‖e(0)‖ sup
j

j

∑
t=0

ρ (j−1) +
h‖B‖
(1− ρ )

‖w‖

= ρ (k−1)‖e(0)‖ − (1− ρ )

(1− ρ )
‖e(0)‖+ h‖B‖

(1− ρ )
‖w‖

≤ ρ (k−1)‖e(0)‖ ≤ ‖e(0)‖
≤ ρ (k−1)r ≤ r, if ‖e(0)‖ = r

⇐ h‖B‖
(1− ρ )

‖w‖ ≤ ‖e(0)‖ ≥ r

⇐ r
(1− ρ )

≥ h‖B|2
(1− ρ )

‖u‖

⇔ r ≥ h‖B‖‖w‖

⇐ ‖w‖ ≤ r
h‖B‖

= µ.

(C.13)
This will not necessarily hold in the interior of the set but it will hold
outside and on the boundary of this compact set. Therefore the set X is
invariant under u = u + w, with w ∈ W , namely, no solution starting
inside X can pass its boundary under any w ∈ W . Note that, for tanh
activations, this result holds globally. Conversely, given a bound µ for
W , we can compute r such that there is a set X that is RPI, namely:

X =

{
x ∈ Rn : ‖x‖ ≤ r =

h‖B‖
1− ρ

µ

}
. (C.14)

Global practical Stability follows by taking x = 0 and δ = γ(‖u‖).
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2. For the ReLU activation, the set P(k) does not cover the entire Rn.
This complicates the analysis further as the output i of the network
layer k becomes autonomous when (x(k), u) 6∈ Pi(k). In particular, if
at any k = t we have (x(t), u) 6∈ Pi(t) then, because of linearity, we
also have that:

xi(t + 1) = xi(t)⇒
‖e(t + 1)‖ ≤ β(‖e(0)‖, t + 1) + γ(‖w‖) + ‖ei(t)− (Ii + Ai)e(t)‖,

≤ β(‖e(0)‖, t + 1) + γ(‖w‖) + ‖e(t)− (I + A)e(t)‖,
= β(‖e(0)‖, t + 1) + γ(‖w‖) + ‖ −Ae(t)‖,
≤ β(‖e(0)‖, t + 1) + γ(‖w‖) + ζt,

(C.15)
where:

ζt = ‖A‖‖e(t)‖ ≤ ‖A‖ sup
x(0)∈X

(
β(‖e(0)‖, t)

)
= ρ t‖A‖ sup

x(0)∈X
‖e(0)‖.

(C.16)

Where X = {x ∈ Rn : ‖x− x‖ ≤ r} is a bounded set of initial states.
From the last two equations and the fact that ρ is the spectral radius
of (I + A) we can satisfy the δ-IOpS condition, with:

‖e(k)‖ ≤ β(‖e(0)‖, k) + γ(‖w‖) + ∑
t<k

ρ tζt,

ζt ≤ ζ = sup
k

k

∑
j=0

ζ j =
‖A‖

(1− ρ )
r ≤ ‖A‖
‖I− I−A‖r = r.

(C.17)

If u = u + w with w ∈ W = {w ∈ Rm : ‖w‖ ≤ µ} then, by taking the
sup over this set of the gain γ, and over k of the inequality Eq. (C.17),
we have δ-IOpS condition with the ultimate bound:

‖x− x‖ ≤ ‖x(0)− x(0)‖
(1− ρ )

+ h
‖B‖µ
(1− ρ )

, (C.18)
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c.2 stability proof for shared weights
Proof. (Equation 1: Asymptotic stability for shared weights)

Tanh activation case:

1. Recall that we have assumed that, for a tanh activation function, the
network dynamics can be globally approximated by its linearization
and the steady-state condition is:

x = x + h tanh(Ax + Bu + b)⇔ Ax + Bu + b = 0. (C.19)

The network has a unique input-dependant steady-state x with steady-
state gain G : ‖H(k)‖ → G, given by, respectively2:

x = −A−1(Bu + b), (C.20)

G =

∥∥∥∥ ∂x
∂u

∥∥∥∥ =
‖B‖
‖A‖ . (C.21)

From this point and the above considerations in the proof of Theorem
4 we will now prove that in the case of tied weights, the network with
tanh activation is Globally Asymptotically Stable with equilibrium x
given by Eq. (C.20). In order to do this we will again use the linearized
system and apply the superposition of the free response with the
forced response. In particular, from the proof of Theorem 4 part 1

and from Eq. (C.7) we have that the free response of x(k)− x, for any
steady-state x, is norm bounded by:

β(‖e(k)‖) = ρ k‖x(0)− x‖, (C.22)

which vanishes asymptotically. Conversely, recall that the forced re-
sponse (of the linearized system) to the input u is given by the discrete
convolution Eq. (C.2). This convolution converges for any chosen lin-
earization point as ρ < 1. Therefore, by linearizing around any x, we
have:

x(k)→ (I− J(x, u))−1hσ
′
(x, u)(Bu + b) = −A−1(Bu + b), (C.23)

thus providing the desired Global Asymptotic Stability result.

2. From the fact that the network function is Lipschitz, the network is
also Globally Input-Output Robustly Stable, as shown for the case
of untied weights in the proof of Theorem 4, part 1. Moreover, from
Eq. (C.7) we have that the IOS property holds also around any nominal
equilibrium point x.

2 Note that the matrix A is invertible by construction.
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ReLU activation case:

1. For ReLU activations, the network dynamics is piece-wise linear, and
sub-differentiable. In particular, the network has 2n possible 1-step
transitions, where n is the number of dimensions. We will proceed
by enumeration of all possible dynamics transition functions to show
that one cannot determine the existence of a steady state or a single
set of active neurons in the considered setting. This motivates the use
of incremental stability. First of all, we have that:

P = {(x, u) ∈ Rn+m : Ax + Bu + b > 0},
Pi = {(x, u) ∈ Rn+m : Ai•x + Bi•u + bi > 0}.

(C.24)

The network state at the next step is then given by:

x+i =

{
xi + h(Ai•x + Bi•u + bi) i f −Ai•x ≤ (Bi•u + bi),
xi i f −Ai•x > (Bi•u + bi).

(C.25)

The activation slope for the i-th coordinate is the set valued:

σ
′
ii(∆x) ∈


{1}, i f −Ai•x < (Bi•u + bi)

{0}, i f −Ai•x > (Bi•u + bi)

[0, 1], i f −Ai•x = (Bi•u + bi)

(C.26)

The Jacobian is again given by:

J(x, u) = I + σ
′
(∆x)A. (C.27)

Clearly, if (x(k), u) ∈ P , ∀k then the system is linear and time in-
variant. In this region the system is linear and could admit a unique,
input-dependant steady-state, given by:

x = −A−1(Bu + b), (C.28)

This, however, cannot be guaranteed as discussed next.

In general, we cannot expect (x(k), u) ∈ P , ∀k. We could instead
look for a steady state to be either on the boundary of P or outside
the set. In particular, if (x(k), u) 6∈ P for some k then ∃ i : xi(k +
t) = xi(k), ∀t ≥ 0 and therefore part of the network states will
become autonomous at layer k, making the network simply stable if
the activation stays saturated (which cannot be guaranteed). Consider
the case in which, at some time k, we have (x(k), u) 6∈ Pi (for example
in Ni). In this case we have that xi(k + t) = xi(k), ∀t ≥ 0 and the
network state will be free to change in its remaining dimensions
with the i-th one being fixed for at least one step. For the remaining
dimensions, we can take out xi and consider its effect as an additional
bias element. This will result in a smaller state space x̃ = [xj, . . . , xn]T
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except for xi, with state transfer matrix I + hÃ, where Ã consists of all
elements of A, without the i-th row and column. Same for B̃ having the
elements of B except the i-th row. Note that Ã still has eigenvalues in
the same region as A and is therefore negative definite and invertible.
For this new system we have three possibilities:

a) In the first case the trajectory stays in Ni all the time and the
steady-states for all dimensions except i are given by:

x̃ = Ã−1(B̃u + b̃ + Jxi) (C.29)

where J is a diagonal matrix containing the i-th column of J except
for the i-th element.

b) Another possibility is that at some point we also have that (x(k), u) 6∈
Pj for some other j (they also can be more than one at the time)
in which case one can reduce the state space again and repeat as
above.

c) The third possibility is, however, that some more, or even all
of the activations become unsaturated again. Then, the system
will continue to evolve in possibly all state dimensions, and its
free evolution will be contracting once again but changing its
direction with respect to the input. In this case, we can therefore
only say that the system contracts according to ‖I + A‖ as long
as activations are not saturated, however, we cannot guarantee
that they remain unsaturated nor that there is a steady state. Note
that the network trajectory depends on the initial condition, and
the fact that (x(k), u) ∈ Pi at time k is also dependent on x(0). At
the same time, the contraction in ‖I + A‖ and of all sub-matrices
is sufficient to show convergence in the same norm space, for a
zero input and for each pair of trajectories, as well as the bound
discussed for the unshared weight case in Theorem 4:

ζ =
‖x(0)− x(0)‖

ρ
. (C.30)

2. To prove Input-Output incremental practical Stability, note that each
combination of different vector fields that make up f (x, u) provides
a vector field that is Input-Output Stable. Moreover, f is uniformly
continuous. We can therefore take the worst case IOpS gain for each
value of the vector field to provide suitable upper bounds for the
δ-IOpS definition to be satisfied as in proof of Theorem 4, part 2.

Note that the gain γ(·) can be used, for instance, as a regularizer to reduce
the effect of input perturbations on the output of the network.



D C O N S T R A I N T S I M P L E M E N TAT I O N
P R O O F S

In this section, the proposed implementation for fully connected and convo-
lutional layers is shown to be sufficient to fulfil the stability constraint on
the Jacobian spectral radius.

d.1 proof of fully connected implementa-
tion

Recall Algorithm 1 from Chapter 3. The following result is obtained:

Lemma 3. The Jacobian stability condition, ρ(J(x, u)) < 1, is satisfied ∀(x, u) ∈
P for the fully connected layer if h ≤ 1 and Algorithm 1 is used.

Since Lemma 3 is equivalent to Theorem 2 from Chapter 3, the former
will be proven next.

Proof. (Proof of Lemma 3)
Recall that Algorithm 1 results in the following operation being performed

after each training epoch:

R̃←


√

δ
R√
‖RTR‖F

if ‖RTR‖F > δ

R, Otherwise,
(D.1)

with δ = 1− 2ε ∈ (0, 1). Recall that

A = −RTR− εI. (D.2)

Then, Eq. (D.1) is equivalent to the update:

Ã←

− R̃TR̃− εI = −(1− 2ε)
RTR
‖RTR‖F

− εI, if ‖RTR‖F > 1− 2ε

A, Otherwise
(D.3)

Eq. (D.1) guarantees that ‖RTR‖F ≤ (1− 2ε). From the fact that the Frobe-
nius norm is an upper bound of the spectral norm and because of symmetry
we have that:

ρ(RTR) = ‖RTR‖2 ≤ ‖RTR‖F ≤ 1− 2ε. (D.4)
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Recall that, from Eq. (D.2), A is negative definite and it only has real negative
real eigenvalues. Recall also Lemma 2. Therefore, by applying the definition
in Eq. (D.2) we have that R = 0⇒ A = −εI, then the eigenvalues of hA are
always located within the interval [−h(1− ε),−hε]. This means that:

ρ(hA) ≤ h max {ε, 1− ε}. (D.5)

To complete the proof, recall that the network Jacobian is:

J(x, u) = I + hσ
′
(∆x)A.

We will now look at the specific activation functions:

1. For ReLU activation, we simply have that J(x, u) = I + hA in the set
P . Lemma 2 implies that I + hA has only positive real eigenvalues
located in [1− h(1− ε), 1− hε] which, when h ∈ (0, 1], implies that:

ρ ≤ max {1− h(1− ε), 1− hε} < 1. (D.6)

2. For tanh activations, since the matrix

A =
1
2

(
σ
′
(∆x)A + AT

(
σ
′
(∆x)

)T
)

(D.7)

is symmetric, A is negative definite and σ
′
(·) is diagonal with entries

σ
′
ii(·) ∈ [σ, 1] with 0 < σ� 1 when (x, u) ∈ P , then A is also negative

definite in this set. Therefore, in virtue of the observations at page
399-400 of Horn and Johnson, 2012, we have that the real part of the
eigenvalues of σ

′
(∆x)A is always less than zero in P . Namely,

Re(eig(σ
′
(∆x)A)) < 0. (D.8)

At the same time, by construction of A and again thanks to σ
′
ii(·) ∈

[σ, 1] and σ
′
ij(·) = 0 if i 6= j, we have that:

ρ(σ
′
(∆x)A) ≤ ‖σ′(∆x)A‖2

≤ ‖σ′(∆x)‖2‖A‖2

≤ ‖A‖2

≤ 1− ε

(D.9)

From the above considerations the real part of the eigenvalues of
hσ
′
(∆x)A is in the interval [−h(1− ε),−hσε]. Assume h ≤ 1.

Finally, we show that the Jacobian has only positive real eigenvalues.
From Theorem 2.2 in Wu, 1988, we know that σ

′
(∆x)A is similar to:

σ
′
(∆x)−1/2σ

′
(∆x)Aσ

′
(∆x)1/2

= σ
′
(∆x)1/2Aσ

′
(∆x)1/2

= σ
′
(∆x)1/2A(σ

′
(∆x)1/2)

T

(D.10)
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which is symmetric, negative definite and therefore has only negative
real eigenvalues, provided that (x, u) ∈ P . Since similarity implies
eigenvalue equivalence, then σ

′
(∆x)A has only negative real eigenval-

ues. Then, from Lemma 2, and from Eq. (D.8) and Eq. (D.9) we have that
the eigenvalues of J(x, u) are positive real and contained in [1− h(1−
ε), 1− hσε]. Therefore we have that ρ ≤ max {1− h(1− ε), 1− hσε},
which is less than 1 as σ > 0 by definition.

The less restrictive bound δ = 2(1− ε) with h ≤ 1 is also sufficient for
stability but it can result in trajectories that oscillate since it it does not
constrain the eigenvalues to be positive real. Practically speaking the bound
δ = 2(1− ε) has has proven sufficient for our MNIST experiments to be suc-
cessful, however, we believe it is important to stress the difference between
this and our proposed bound. In particular, our solution for fully connected
layers leads to a critically damped system, i.e., to a monotonic trajectory
for the 1D case. This means that we can expect the activations to behave
monotonically both in time and in space. This behaviour is demonstrated
in Section 3.5. The additional regularity of the resulting function acts as a
stronger regularisation on the network.

Note also that in the above proof we have shown that, in the case of ReLU,
the 2-norm is suitable to prove stability. Moreover, if h = 1 and ε ≤ 0.5 then
we have ρ = 1− ε.

d.2 derivation of convolutional layer im-
plementation

d.2.1 Mathematical derivation of the proposed algorithm

Denote the convolution operator in NAIS-Net, for each latent map c, as the
following:

X(c)(k + 1) = X(c)(k) + hσ
(

∆X(c)(k)
)

, (D.11)

where:
∆X(c)(k) = ∑

i
C(c)
(i) ∗ X(i)(k) + ∑

j
D(c)

(j) ∗U(j) + E(c), (D.12)

and where X(i)(k), is the layer state matrix for channel i, U(j), is the layer
input data matrix for channel j (where an appropriate zero padding has been
applied) at layer k. The activation function, σ, is again applied element-wise.
Recall also Algorithm 2 from Chapter 3. The following Lemma is obtained
(equivalent to Theorem 3 from Chapter 3):
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Lemma 4. If Algorithm 2 is used, then the Jacobian stability condition, ρ(J(x, u)) <
1, is satisfied ∀(x, u) ∈ P for the convolutional layer with h ≤ 1.

The first step to obtain the result is to prove that the convolutional layer
can be expressed as a suitable fully connected layer as in Lemma 1 from the
main paper. This is shown next.

Proof. (Proof of Lemma 1 from Chapter 3)
For layer k, define X(k) as a tall matrix containing all the state channel

matrices X(c)(k) stacked vertically, namely:

X =


X(1)

X(2)

...
X(Nc)

 . (D.13)

Similar considerations apply to the input matrix U and the bias matrix
E. Then, convolutional layers can be analysed in a similar way to fully
connected layers, by means of the following vectorised representation:

x(k + 1) = x(k) + hσ
(
Ax(k) + Bu + b

)
, (D.14)

where x(k) ∈ Rn2
X·Nc , u = Rn2

U ·Nc , where Nc is the number of channels, nX
is the size of the latent space matrix for a single channel, while nU is the
size of the input data matrix for a single channel. In Eq. (D.14), the matrices
A and B are made of blocks containing the convolution filters elements in
a particular structure, to be characterised next. First, in order to preserve
dimensionality of x, the convolution for x will have a fixed stride of 1, a filter
size nC and a zero padding of p ∈ N, such that nC = 2p + 1. If a greater
stride is used, then the state space can be extended with an appropriate
number of constant zero entries (not connected). Let’s then consider, without
loss of generality, a unitary stride. The matrix A is all we need to define in
order to prove the Lemma.

In Eq. (D.14), the vector x is chosen to be the vectorised version of X. In
particular,

x =


x(1)

x(2)
...

x(Nc)

 , (D.15)

where x(c) is the vectorised version of X(c). More specifically, these objects
are defined as:

X(c) =


X(c)

1,1 X(c)
1,2 · · · X(c)

1,n

X(c)
2,1 X(c)

2,2 · · · X(c)
2,n

...
... . . . ...

X(c)
n,1 X(c)

n,2 · · · X(c)
n,n

 ∈ RnX×nX , (D.16)
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and

x(c) =


X(c)

1,1

X(c)
1,2
...

X(c)
n,n

 ∈ Rn2
X . (D.17)

Similar considerations apply to u. The matrix A in Eq. (D.14) has the follow-
ing structure:

A =



A(1)
(1) A(1)

(2) . . . A(1)
(Nc)

A(2)
(1) A(2)

(2) . . . A(2)
(Nc)

...
... . . . ...

A(Nc)
(1) A(Nc)

(2) . . . A(Nc)
(Nc)


∈ R(n2·Nc)×(n2·Nc), (D.18)

where Nc is the number of channels and A(c)
(i) corresponds to the filter

C(c)
(i) . In particular, each row of A contains in fact the elements of the filter

C(c)
(i) , plus some zero elements, with the central element of the filter C(c)

(i)
on the diagonal. The latter point is instrumental to the proof and can be
demonstrated as follows. Define the single channel filters as:

C(c)
(i) =


C(c)
(i) 1,1

C(c)
(i) 1,2

· · · C(c)
(i) 1,nC

C(c)
(i) 2,1

C(c)
(i) 2,2

· · · C(c)
(i) 2,nC

...
... . . . ...

C(c)
(i) nC,1

C(c)
(i) nC,2

· · · C(c)
(i) nC,nC

 . (D.19)

Consider now the output of the single channel convolution Z(c)
(i) = C(c)

(i) ∗ X(i)

with the discussed padding and stride. The first element of the resulting
matrix, Z(c)

(i) 1,1
is determined by applying the filter to the first patch of X(i),

suitably padded. For instance, for a 3-by-3 filter (p = 1), we have:

patch1,1

(
X(i)

)
=



0 0 0 0 · · · 0
0 X(c)

1,1 X(c)
1,2 · · · X(c)

1,n 0

0 X(c)
2,1 X(c)

2,2 · · · X(c)
2,n 0

...
...

... . . . ...
...

0 X(c)
n,1 X(c)

n,2 · · · X(c)
n,n 0


. (D.20)

The first element of Z(c)
(i) is therefore given by:

Z(c)
(i) 1,1

= X(i)
1,1 C(c)

(i) icentre,icentre
+X(i)

1,2 C(c)
(i) icentre,icentre+1

+ · · ·+X(i)
nC−p,nC−p C(c)

(i) nC,nC
,

(D.21)
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where icentre denotes the central row (and column) of the filter.
The second element of the first row can be computed by means of the

following patch (again when p = 1, for illustration):

patch1,2

(
X(i)

)
=



0 0 0 0 · · · 0
0 X(c)

1,1 X(c)
1,2 · · · X(c)

1,n 0

0 X(c)
2,1 X(c)

2,2 · · · X(c)
2,n 0

...
...

... . . . ...
...

0 X(c)
n,1 X(c)

n,2 · · · X(c)
n,n 0


. (D.22)

The element is therefore given by:

Z(c)
(i) 1,2

= X(i)
1,1 C(c)

(i) icentre,icentre−1
+ X(i)

1,2 C(c)
(i) icentre,icentre

+ · · ·+ X(i)
nC−p,nC

C(c)
(i) nC,nC

.

(D.23)
The remaining elements of Z(c)

(i) will follow a similar rule, which will involve
(in the worst case) all of the elements of the filter. In particular, one can
notice for Zij the corresponding element of X, Xij, is always multiplied by

C(c)
(i) icentre,icentre

. In order to produce the matrix A, we can consider the Jacobian

of Z. In particular, for the first two rows of A(c)
(i) we have:

A(c)
(i) 1,•

=
∂Z(c)

(i) 1,1

∂X(i)
=
[

C(c)
(i) icentre,icentre

C(c)
(i) icentre+1,icentre+1

. . . C(c)
(i) nC,nC

0
]

,

(D.24)
where [·] is used to define a row vector, and where A(c)

(i) 1,•
has an appropriate

number of zeros at the end, and

A(c)
(i) 2,•

=
∂Z(c)

(i) 1,2

∂X(i)
=
[

C(c)
(i) icentre,icentre−1

C(c)
(i) icentre,icentre

. . . C(c)
(i) nC,nC

0
]

.

(D.25)
Note that, the vectors defined in Eq. (D.24) and Eq. (D.25), contain several
zeros among the non-zero elements. By applying the filter C(c)

(i) to the remain-

ing patches of X(i) one can inductively construct the matrix A(c)
(i) . It can also

be can noticed that each row A(c)
(i) j,•

contains at most all of the elements of the

filter, with the central element of the filter in position j. By stacking together
the obtained rows A(c)

(i) j,•
we obtain a matrix, A(c)

(i) , which has C(c)
(i) icentre,icentre

on the diagonal. Each row of this matrix contains, in the worst case, all of
the elements of C(c)

(i) .
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We define the vectorised version of Z(c)
(i) as:

Z(c)
(i) =


Z(c)
(i) 1,1

Z(c)
(i) 1,2

...
Z(c)
(i) n,n

 ∈ Rn2
, (D.26)

which, by linearity, satisfies:

z(c)
(i) = A(c)

(i) x(i). (D.27)

By summing over the index i we obtain the vectorised output of the convo-
lution C ∗ X for the channel c:

z(c) =
Nc

∑
i=1

A(c)
(i) x(i) =

[
A(c)

(1) A(c)
(2) . . . A(c)

(Nc)

]
x = A(c)x, (D.28)

where the matrices A(c)
(i) are stacked horizontally and where we have used

the definition of x given in Eq. (D.15). The full matrix A is therefore given
by:

A =


A(1)

A(2)

...
A(Nc)

 =


A(1)

(1) A(1)
(2) . . . A(1)

(Nc)

A(2)
(1) A(2)

(2) . . . A(2)
(Nc)

...
... . . . ...

A(Nc)
(1) A(Nc)

(2) . . . A(Nc)
(Nc)

 , (D.29)

where we have conveniently separated the long blocks used to produce the
single channels result, z(c). By defining the vector

z =


z(1)

z(2)
...

z(Nc)

 , (D.30)

and by means of Eq. (D.28) we have that z = Ax. This is a vectorised
representation of C ∗ X.

We are now ready to prove Lemma 4 and consequently Theorem 3

from Chapter 3.

Proof. (Proof of Lemma 4)
Similar to what done for the fully connected layer, we will first show

that Algorithm 2 places the eigenvalues of I+A strictly inside the unit circle.
Then, we will also show that J(x, u) enjoys the same property in P .
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We will now derive the steps used in Algorithm 2 to enforce that ρ(I +
A) ≤ 1− ε. Recall that, from Lemma 2, we need the eigenvalues A to be
lying inside the circle, S , of the complex plane centered at (−1, 0) with
radius 1− ε. More formally:

S = {λ ∈ C : |λ + 1| ≤ 1− ε}. (D.31)

The Gershgorin theorem offers a way to locate the eigenvalues of A inside
S . Consider the c-th long long block in Eq. (D.29), A(c). Recall the particular
structure of A(c)

(c) as highlighted in Eq. (D.24) and Eq. (D.25). For each long

block A(c) we have that all associated Gershgorin disks must satisfy:∣∣∣λ− C(c)
icentre

∣∣∣ ≤ ∑
i 6=icentre

∣∣∣C(c)
i

∣∣∣ , (D.32)

where λ is any of the corresponding eigenvalues, C(c)
icentre

is the central element

of the filter C(c)
(c), namely, C(c)

icentre
= C(c)

(c)icentre,icentre
, and the sum is performed

over all of the remaining elements of C(c)
(c) plus all the elements of the

remaining filters used for, z(c), namely C(c)
(j) , ∀j 6= c. Therefore, one can act

directly on the kernel C without computing A.
By applying Algorithm 2, to each channel c we have that:

C(c)
icentre

= −1− δc, (D.33)

and
∑

i 6=icentre

∣∣∣C(c)
i

∣∣∣ ≤ 1− ε− |δc| (D.34)

where
|δc| < 1− η, 0 < ε < η < 1. (D.35)

This means that for every c, the c-th block of A has the largest Gershgorin
region bounded by a disk, S c. This disk is centred at (−1− δc, 0) with
radius 1− ε− |δc|. More formally, the disk is defined as:

S c = {λ ∈ C : |λ + 1 + δc| ≤ 1− ε− |δc|}. (D.36)

Thanks to Eq. (D.35), this region is not empty and its center can be only
strictly inside S . Clearly, we have that, S c ⊆ S , ∀c. This follows from con-
vexity and from the fact that, when |δc| = 1− η, thanks to Eq. (D.35) we
have

S c = {λ ∈ C : |λ + 1± (1− η)| ≤ 1− ε− (1− η)} ⊂ S (D.37)

while on the other hand δc = 0⇒ S c = S .
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We will now show that the eigenvalue condition also applies to the
network state Jacobian. From Algorithm 2 we have that each row j of the
matrix J = I + A satisfies (for the corresponding channel c):

∑
i

∣∣∣Jji

∣∣∣ ≤ ∣∣∣1 + C(c)
icentre

∣∣∣+ ∑
i 6=icentre

∣∣∣C(c)
i

∣∣∣
≤ |δc|+ 1− ε− |δc| = 1− ε.

(D.38)

Thus ‖J‖∞ = ‖I + A‖∞ ≤ 1− ε < 1. 1 Recall that, in the vectorised represen-
tation, the state Jacobian is:

J(x, u) = I + hσ
′
(∆x)A. (D.39)

Then, if h ≤ 1, we have that ∀(x, u) ∈ P :

‖J(x, u)‖∞ = max
i
|1− hσ

′
ii(∆x)(1 + δc)|+ hσ

′
ii(∆x)∑

j 6=i
|Aij|

≤ max
i
{1− hσ

′
ii(∆x) + hσ

′
ii(∆x)|δc|+ hσ

′
ii(∆x)(1− ε)− hσ

′
ii(∆x)|δc|}

= max
i
{1− hσ

′
ii(∆x)ε} < 1− hσε ≤ 1.

(D.40)
The proof is concluded by means of the identity ρ(·) ≤ ‖ · ‖.

Note that in the above we have also showed that in the convolutional case
the infinity norm is suitable to prove stability. Moreover, for ReLU we have
that ρ ≤ 1− hε.

The above results can directly be extended to the untied weight case
providing that the projections are applied at each stage of the unroll.

In Chapter 3 we have used δc = 0, ∀c (equivalently, η = 1). This means
that one filter weight per latent channel is fixed at −1 which might seem
conservative. It is however worth noting that this choice provides the biggest
Gershgorin disk for the matrix A as defined in Eq. (D.37). Hence δc = 0, ∀c
results in the least restriction for the remaining elements of the filter bank.
At the same time, we have NC less parameters to train. A tradeoff is however
possible if one wants to experiment with different values of η ∈ (ε, 1).

d.2.2 Illustrative Example

Consider, for instance, 3 latent channels X(1), . . . , X(3), which results in 3
blocks of 3 filters, 1 block per channel X(c)(k + 1). Each filter has the same

1 Note that this also implies that ρ(I + A) ≤ 1− ε, by means of the matrix norm identity
ρ(·) ≤ ‖ · ‖. This was however already verified by the Gershgorin Theorem.
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size nC, which again needs to be chosen such that the channel dimensionality
is preserved. This corresponds to the following matrix:

A =


A(1)

(1) A(1)
(2) A(1)

(3)

A(2)
(1) A(2)

(2) A(2)
(3)

A(3)
(1) A(3)

(2) A(3)
(3)

 =

=



C(1)
icentre

C(1)
j C(1)

nC−1 . . . . . . C(1)
3·nC−1

...
... . . . . . . . . .

...
˜

C(2)
1 . . . C(2)

icentre
. . . . . . C(2)

3·cC−1
...

... . . . . . . . . .
...

˜
C(3)

1 . . . . . . . . . C(3)
icentre

...
...

... . . . . . . . . . . . .


,

(D.41)

where the relevant rows include all elements of the filters (in the worst
case) together with a large number of zeros, the position of which does
not matter for our results, and the diagonal elements are known and non-
zero. Therefore, according to Eq. (D.41), we have to repeat Algorithm 2

from Chapter 3 for each of the 3 filter banks.
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Sokolić, Jure, Raja Giryes, Guillermo Sapiro, and Miguel RD Rodrigues
(2017). “Robust large margin deep Neural Networks.” In: IEEE Transactions
on Signal Processing 65.16, pp. 4265–4280 (p. 97).

Sontag, Eduardo D (1998). Mathematical Control Theory: Deterministic Finite
Dimensional Systems. 2nd. Springer-Verlag (pp. 33, 102, 109).

Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov (2014). “Dropout: A Simple Way to Prevent Neural
Networks from Overfitting.” In: The journal of machine learning research 15.1,
pp. 1929–1958 (p. 23).

Srivastava, Rupesh Kumar (2018). “New architectures for very deep learn-
ing.” PhD thesis. Università della Svizzera italiana (p. 27).

Srivastava, Rupesh Kumar, Klaus Greff, and Jürgen Schmidhuber (2015a).
“Highway networks.” In: arXiv preprint arXiv:1505.00387 (pp. 3, 27, 30, 33).

Srivastava, Rupesh Kumar, Klaus Greff, and Jürgen Schmidhuber (2015b).
“Training Very Deep Networks.” In: Advances in Neural Information Process-
ing Systems (NeurIPS) (p. 27).

Stackelberg, Heinrich von (1952). Theory of the Market Economy. William
Hodge (p. 84).

Steil, Jochen J (1999). Input Output Stability of Recurrent Neural Networks.
Cuvillier Göttingen (p. 35).

Steiner, Benoit, Zachary DeVito, Soumith Chintala, Sam Gross, Adam Paszke,
Francisco Massa, Adam Lerer, Gregory Chanan, Zeming Lin, Edward
Yang, et al. (2019). “PyTorch: An imperative style, high-performance deep
learning library.” In: Advances in Neural Information Processing Systems
(NeurIPS) 32 (pp. 55, 74).

Stollenga, Marijn F, Wonmin Byeon, Marcus Liwicki, and Juergen Schmid-
huber (2015). “Parallel multi-dimensional lstm, with application to fast



bibliography 152

biomedical volumetric image segmentation.” In: Advances in Neural Infor-
mation Processing Systems (NeurIPS), pp. 2998–3006 (p. 26).

Stollenga, Marijn F, Jonathan Masci, Faustino Gomez, and Jürgen Schmid-
huber (2014). “Deep Networks with Internal Selective Attention through
Feedback Connections.” In: Advances in Neural Information Processing Sys-
tems (NeurIPS) (p. 85).

Strogatz, Steven H. (2015). Nonlinear dynamics and chaos: with applications to
physics, biology, chemistry, and engineering. 2nd. Westview Press (pp. 31, 33,
109).

Su, Jiahao, Wonmin Byeon, Furong Huang, Jan Kautz, and Animashree
Anandkumar (2020). “Convolutional Tensor-Train LSTM for Spatio-temporal
Learning.” In: Advances in Neural Information Processing Systems (NeurIPS)
(p. 26).

Sun, Jian, Jiaya Jia, Chi-Keung Tang, and Heung-Yeung Shum (2004). “Pois-
son Matting.” In: ACM SIGGRAPH 2004 Papers. SIGGRAPH ’04. Los
Angeles, California: ACM, pp. 315–321 (p. 82).

Sussillo, David and LF Abbott (2014). “Random walk initialization for train-
ing very deep feedforward networks.” In: arXiv preprint arXiv:1412.6558
(p. 22).

Sutskever, Ilya, Oriol Vinyals, and Quoc V Le (2014). “Sequence to sequence
learning with Neural Networks.” In: Advances in Neural Information Pro-
cessing Systems (NeurIPS), pp. 3104–3112 (p. 30).

Sutton, Richard S and Andrew G Barto (1998). Reinforcement learning: An
introduction. Vol. 28. MIT press (pp. 12, 17).

Sutton, Richard (1986). “Two problems with back propagation and other
steepest descent learning procedures for networks.” In: Proceedings of the
Eighth Annual Conference of the Cognitive Science Society, 1986, pp. 823–832

(p. 19).

Szegedy, Christian, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbig-
niew Wojna (2016). “Rethinking the inception architecture for computer
vision.” In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2818–2826 (pp. 55, 56).

Szegedy, Christian, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian Goodfellow, and Rob Fergus (2014). “Intriguing properties of
Neural Networks.” In: International Conference on Learning Representations
(ICLR) (p. 35).

Tallec, Corentin and Yann Ollivier (2018). “Can recurrent Neural Networks
warp time?” In: International Conference on Learning Representations (ICLR)
(p. 33).



bibliography 153

Thrun, Sebastian and Lorien Pratt (1998). “Learning to learn: Introduction
and overview.” In: Learning to learn. Springer, pp. 3–17 (p. 79).

Tokmakov, P., K. Alahari, and C. Schmid (2017). “Learning Video Object
Segmentation with Visual Memory.” In: Proceedings of the IEEE International
Conference on Computer Vision (p. 82).

Tsuzuku, Yusuke, Issei Sato, and Masashi Sugiyama (2018). “Lipschitz-
margin training: Scalable certification of perturbation invariance for deep
Neural Networks.” In: Advances in Neural Information Processing Systems
(NeurIPS) 31, pp. 6541–6550 (p. 97).

Ulyanov, Dmitry, Andrea Vedaldi, and Victor Lempitsky (2016). “Instance
normalization: The missing ingredient for fast stylization.” In: arXiv
preprint arXiv:1607.08022 (p. 23).

Vapnik, Vladimir (1992). “Principles of risk minimization for learning
theory.” In: Advances in Neural Information Processing Systems (NeurIPS),
pp. 831–838 (pp. 8, 9).

Vapnik, Vladimir (1998). Statistical Learning Theory. Wiley (pp. 8, 9).

Veit, Andreas and Serge Belongie (2018). “Convolutional Networks with
Adaptive Inference Graphs.” In: Proceedings of the European Conference on
Computer Vision (ECCV) (p. 34).

Vinyals, Oriol, Charles Blundell, Timothy Lillicrap, and Daan Wierstra (2016).
“Matching Networks for One Shot Learning.” In: Advances in Neural Infor-
mation Processing Systems (NeurIPS), pp. 3630–3638 (p. 80).

Visin, Francesco, Marco Ciccone, Adriana Romero, Kyle Kastner, Kyunghyun
Cho, Yoshua Bengio, Matteo Matteucci, and Aaron Courville (2016). “Re-
seg: A recurrent Neural Network-based model for semantic segmenta-
tion.” In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), pp. 41–48 (pp. 26, 78).

Visin, Francesco, Kyle Kastner, Kyunghyun Cho, Matteo Matteucci, Aaron
Courville, and Yoshua Bengio (2015). “Renet: A recurrent Neural Net-
work based alternative to convolutional networks.” In: arXiv preprint
arXiv:1505.00393 (p. 26).

Voigtlaender, Paul and Bastian Leibe (2017a). “Online Adaptation of Convo-
lutional Neural Networks for Video Object Segmentation.” In: Proceedings
of the British Machine Vision Conference (BMVC) (pp. 78, 82, 89, 90).

Voigtlaender, Paul and Bastian Leibe (2017b). “Online Adaptation of Convo-
lutional Neural Networks for the 2017 DAVIS Challenge on Video Object
Segmentation.” In: The 2017 DAVIS Challenge on Video Object Segmentation -
CVPR Workshops (p. 82).



bibliography 154

Vorontsov, Eugene, Chiheb Trabelsi, Samuel Kadoury, and Chris Pal (2017).
“On orthogonality and learning recurrent networks with long term de-
pendencies.” In: Proceedings of Machine Learning Research 70. Ed. by
Doina Precup and Yee Whye Teh, pp. 3570–3578 (p. 35).

Vuorio, Risto, Shao-Hua Sun, Hexiang Hu, and Joseph J Lim (2019). “Mul-
timodal Model-Agnostic Meta-Learning via Task-Aware Modulation.”
In: Advances in Neural Information Processing Systems (NeurIPS), pp. 1–12

(p. 84).

Waibel, Alex, Toshiyuki Hanazawa, Geoffrey Hinton, Kiyohiro Shikano,
and Kevin J Lang (1989). “Phoneme recognition using time-delay Neural
Networks.” In: IEEE Transactions on Acoustics, Speech, and Signal Processing
37.3, pp. 328–339 (p. 15).

Wang, I-Jeng and James C Spall (2003). “Stochastic optimization with inequal-
ity constraints using simultaneous perturbations and penalty functions.”
In: 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.
03CH37475). Vol. 4. IEEE, pp. 3808–3813 (p. 97).

Wang, Qinyi, Yexin Zhang, Junsong Yuan, and Yilong Lu (2019). “Space-
Time Event Clouds for Gesture Recognition: From RGB Cameras to Event
Cameras.” In: Proceedings of the IEEE Winter Conference on Applications of
Computer Vision. IEEE, pp. 1826–1835 (p. 58).

Weinan, E. (2017). “A proposal on machine learning via dynamical systems.”
In: Communications in Mathematics and Statistics 5.1, pp. 1–11 (pp. 29, 34).

Werbos, Paul J. (1974). “Beyond regression: New tools for prediction and
analysis in the behavioral sciences.” PhD thesis. Cambridge, MA, USA:
Harvard University (p. 17).

Werbos, Paul J. (1981). “Applications of Advances in Nonlinear Sensitivity
Analysis.” In: Proceedings of the 10th IFIP Conference, 31.8 - 4.9, NYC, pp. 762–
770 (p. 17).

Werbos, Paul J. (1988). “Generalization of backpropagation with application
to a recurrent gas market model.” In: Neural Networks 1.4, pp. 339–356

(pp. 15, 17).

Werbos, Paul J. (1990). “Backpropagation through time: what it does and
how to do it.” In: Proceedings of the IEEE 78.10, pp. 1550–1560 (p. 15).

Wu, Pei Yuan (1988). “Products of Positive Semidefinite Matrices.” In: Linear
Algebra and Its Applications (p. 119).

Wu, QingXiang, Martin McGinnity, Liam Maguire, Ammar Belatreche, and
Brendan Glackin (2007). “Edge detection based on spiking Neural Net-
work model.” In: International Conference on Intelligent Computing. Springer,
pp. 26–34 (p. 56).



bibliography 155

Wu, Yuxin and Kaiming He (2018). “Group normalization.” In: Proceedings
of the European Conference on Computer Vision (ECCV), pp. 3–19 (p. 23).

Wug Oh, Seoung, Joon-Young Lee, Kalyan Sunkavalli, and Seon Joo Kim
(2018). “Fast Video Object Segmentation by Reference-Guided Mask Prop-
agation.” In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (p. 83).

Xiao, Huaxin, Jiashi Feng, Guosheng Lin, Yu Liu, and Maojun Zhang (2018a).
“MoNet: Deep Motion Exploitation for Video Object Segmentation.” In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (p. 82).

Xiao, Lechao, Yasaman Bahri, Jascha Sohl-Dickstein, Samuel Schoenholz,
and Jeffrey Pennington (2018b). “Dynamical Isometry and a Mean Field
Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural
Networks.” In: Proceedings of the International Conference on Machine Learning
(ICML). Ed. by Jennifer Dy and Andreas Krause. Vol. 80. Proceedings
of Machine Learning Research. Stockholmsmässan, Stockholm Sweden:
PMLR, pp. 5393–5402 (p. 22).

Xie, Saining, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He
(2017). “Aggregated residual transformations for deep Neural Networks.”
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 1492–1500 (p. 28).

Xingjian, SHI, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong,
and Wang-chun Woo (2015). “Convolutional LSTM network: A machine
learning approach for precipitation nowcasting.” In: Advances in Neural
Information Processing Systems (NeurIPS) (p. 86).

Yang, Greg, Jeffrey Pennington, Vinay Rao, Jascha Sohl-Dickstein, and
Samuel S. Schoenholz (2019). “A Mean Field Theory of Batch Normaliza-
tion.” In: International Conference on Learning Representations (ICLR) (p. 23).

Yang, Linjie, Yanran Wang, Xuehan Xiong, Jianchao Yang, and Aggelos K.
Katsaggelos (2018). “Efficient Video Object Segmentation via Network
Modulation.” In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (pp. 80, 85, 88, 90, 91).

Ye, Chengxi, Anton Mitrokhin, Cornelia Fermüller, James A Yorke, and
Yiannis Aloimonos (2018). “Unsupervised Learning of Dense Optical
Flow, Depth and Egomotion from Sparse Event Data.” In: arXiv preprint
arXiv:1809.08625 (pp. 57, 98).

Yoshida, Yuichi and Takeru Miyato (2017). “Spectral Norm Regularization
for Improving the Generalizability of Deep Learning.” In: arXiv preprint
arXiv:1705.10941 (pp. 35, 39, 97).



bibliography 156

Yosinski, Jason, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson
(2015). “Understanding Neural Networks through deep visualization.”
In: Deep Learning Workshop at International Conference on Machine Learning
(ICML) (p. 16).

Yu, Fisher and Vladlen Koltun (2016). “Multi-Scale Context Aggregation by
Dilated Convolutions.” In: International Conference on Learning Representa-
tions (ICLR) (p. 55).

Zeiler, Matthew D (2012). “Adadelta: an adaptive learning rate method.” In:
arXiv preprint arXiv:1212.5701 (pp. 12, 21).

Zeiler, Matthew D and Rob Fergus (2014). “Visualizing and understanding
convolutional networks.” In: Proceedings of the European Conference on
Computer Vision (ECCV). Springer, pp. 818–833 (pp. 15, 16).

Zhang, Xingcheng, Zhizhong Li, Chen Change Loy, and Dahua Lin (2017).
“Polynet: A pursuit of structural diversity in very deep networks.” In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 718–726 (p. 31).

Zhao, Hao (2017). “Some Promising Ideas about Multi-instance Video Seg-
mentation.” In: The 2017 DAVIS Challenge on Video Object Segmentation -
CVPR Workshops (p. 82).

Zheng, Shuai, Sadeep Jayasumana, Bernardino Romera-Paredes, Vibhav
Vineet, Zhizhong Su, Dalong Du, Chang Huang, and Philip HS Torr
(2015). “Conditional random fields as recurrent Neural Networks.” In:
Proceedings of the IEEE International Conference on Computer Vision (ICCV),
pp. 1529–1537 (p. 34).

Zhu, Alex Zihao, Dinesh Thakur, Tolga Özaslan, Bernd Pfrommer, Vijay
Kumar, and Kostas Daniilidis (2018a). “The multivehicle stereo event
camera dataset: An event camera dataset for 3D perception.” In: IEEE
Robotics and Automation Letters 3.3, pp. 2032–2039 (pp. 52, 55, 67, 72, 75).

Zhu, Alex Zihao, Liangzhe Yuan, Kenneth Chaney, and Kostas Daniilidis
(2019a). “Unsupervised event-based learning of optical flow, depth, and
egomotion.” In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 989–997 (pp. 57, 60, 70, 98).

Zhu, Alex, Liangzhe Yuan, Kenneth Chaney, and Kostas Daniilidis (2018b).
“EV-FlowNet: Self-Supervised Optical Flow Estimation for Event-based
Cameras.” In: Proceedings of Robotics: Science and Systems. Pittsburgh, Penn-
sylvania (pp. 54, 57, 69, 70, 75, 99).

Zhu, Alex, Liangzhe Yuan, Kenneth Chaney, and Kostas Daniilidis (2019b).
EV-FlowNet: Self-Supervised Optical Flow Estimation for Event-based Cameras.
"https://github.com/daniilidis-group/EV-FlowNet" (p. 69).

https://github.com/daniilidis-group/EV-FlowNet


bibliography 157

Zilly, Julian Georg, Rupesh Kumar Srivastava, Jan Koutnık, and Jürgen
Schmidhuber (2017). “Recurrent highway networks.” In: Proceedings of the
International Conference on Machine Learning (ICML). PMLR, pp. 4189–4198

(pp. 30, 35).

Zintgraf, Luisa, Kyriacos Shiarli, Vitaly Kurin, Katja Hofmann, and Shi-
mon Whiteson (2019). “Fast Context Adaptation via Meta-Learning.” In:
Proceedings of the 36th International Conference on Machine Learning (ICML).
Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97. Proceed-
ings of Machine Learning Research. Long Beach, California, USA: PMLR,
pp. 7693–7702 (p. 84).


	Dedication
	Abstract
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Representation Learning
	1.2 Motivation: Adaptive and Conditional Computation in Neural Networks
	1.3 Main contributions and Outline

	2 Background
	2.1 Learning from experience
	2.2 Supervised Learning
	2.3 Empirical Risk Minimization
	2.4 Model complexity: Underfitting vs Overfitting
	2.5 Regularization techniques
	2.6 Stochastic Gradient Descent
	2.7 Neural Networks
	2.7.1 Types of Layers and Networks
	2.7.2 Training Neural Networks
	2.7.3 Backpropagation Algorithm
	2.7.4 Training challenges of Neural Networks
	2.7.5 Strategies for training Deep Neural Networks


	3 Non-Autonomous Input-Output Stable Neural Networks
	3.1 Introduction
	3.1.1 Main contributions

	3.2 Background and Related Work
	3.2.1 Residual Networks: a dynamical system perspective
	3.2.2 Related Work on Stability of Neural Networks

	3.3 Non-Autonomous Input-Output Stable Nets (NAIS-Nets)
	3.3.1 Fully-Connected NAIS-Net Layer
	3.3.2 Convolutional NAIS-Net Layer
	3.3.3 Stability analysis

	3.4 Stability Constraints Implementation
	3.4.1 Fully-connected blocks.
	3.4.2 Convolutional blocks

	3.5 Forward Propagation Dynamics
	3.5.1 Fixed number of unroll steps
	3.5.2 Pattern-dependent processing depth

	3.6 Experiments on Image Classification
	3.6.1 Preliminary analysis on MNIST
	3.6.2 Image Classification on CIFAR-10/100
	3.6.3 Pattern-Dependent Processing Depth

	3.7 Conclusions

	4 Learning Representations for Asynchronous Event-Based Data
	4.1 Introduction
	4.1.1 Advantages of event cameras
	4.1.2 Challenges with event-based data
	4.1.3 Main contribution

	4.2 Event Representations
	4.3 Method
	4.3.1 Matrix-LSTM

	4.4 Implementation
	4.4.1 GroupByPixel
	4.4.2 GroupByTime

	4.5 Evaluation
	4.5.1 Object classification
	4.5.2 Optical flow prediction

	4.6 Qualitative Results
	4.6.1 Matrix-LSTM vs. ConvLSTM
	4.6.2 Time performance analysis

	4.7 Conclusion

	5 Video Object Segmentation with Spatio-Temporal Features Modulation
	5.1 Introduction
	5.1.1 Main Contributions
	5.1.2 General Problem definition

	5.2 Background and Related Work
	5.2.1 Semi-supervised Video Object Segmentation
	5.2.2 Meta-Learning for few-shot learning problems

	5.3 ReConvNet
	5.3.1 Segmentation Network
	5.3.2 Visual Modulator
	5.3.3 Spatial Modulator

	5.4 Experiments
	5.4.1 Single Object Segmentation
	5.4.2 Multiple Objects Segmentation

	5.5 Results Analysis
	5.6 Conclusion

	6 Conclusions and Future Work
	 Appendix
	A Dynamical Systems and Stability Background
	A.1 Linear Algebra Elements
	A.2 Stability Definitions for Tied Weights
	A.2.1 Describing Functions


	B NAIS-Net with Untied Weights
	B.1 Proposed Network with Untied Weights
	B.1.1 Fully Connected Layers
	B.1.2 Convolutional Layers

	B.2 Non-autonomous set
	B.3 Stability Definitions for Untied Weights
	B.4 Jacobian Condition for Stability
	B.5 Stability Result for Untied Weights

	C Stability Proofs
	C.1 Stability proof for untied weights
	C.2 Stability proof for shared weights

	D Constraints Implementation Proofs
	D.1 Proof of Fully Connected Implementation
	D.2 Derivation of Convolutional Layer Implementation
	D.2.1 Mathematical derivation of the proposed algorithm
	D.2.2 Illustrative Example


	 Bibliography


