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Introduction

Training Very Deep Networks has been made possible thanks to the use of additive non-linear transformations
(Skip-connections), such as in Highway [1] and Residual Networks [2] :

x(k + 1) = x(k) + f (x(k), θ(k)) , 1 ≤ k ≤ K . (1)

• Skip-connections solve vanishing gradient problem.
• Output normalization is required to train (e.g BatchNorm).
• The semantics of the forward path are still unclear (iterative estimation).

Note : Very Deep Networks sharing this structure can be considered as Dynamical Systems. Indeed, Eq. 1 can
be seen as the Forward Euler Discretization of the ODE ẋ = f (x).

Idea : Use Control Theory to analyze the behavior of these networks in terms of the stability of their underlined
dynamical system. We want the network to have a stable behavior such that the propagation of the state do not
fluctuate.

Residual Networks are Autonomous Dynamical Systems.

• Input is connected only to the first layer.
• Stability means output → 0 for each input : useless for ML applications.

Idea : Use input connections to define Non-Autonomous Systems.

Background : Stability Theory

Asymptotic Stability for Non-Linear Systems
A system is said to be asymptotically stable in X if there exists a x̄ and KL-function β such that ∀x(0) ∈ X , k ≥ 0 :

‖x(k)− x̄‖ ≤ β(‖x(0)− x̄‖, k). (2)

The vector x̄ is called a steady state. β have to be strictly decreasing in k with limk→∞ β(·, k)→ 0.

Input-Output Stability for Non-Linear Systems [3]
A system is said to be input-output stable (IOS) wrt bounded additive input perturbations, w , while x ∈ X if there
exists a KL-function β and a K∞ function γ such that ∀x(0) ∈ X :

‖x(k)− x̄‖ ≤ β(‖x(0)− x̄‖, k) + γ(‖w‖). (3)

NAIS-Net block : Non-Autonomous Residual Layer

NAIS-Net fully-connected block is defined by the following non-autonomous system :

x(k + 1) = x(k) + hσ

(
Ax(k) + Bu + b

)
, (4)

where x ∈ Rn is the latent state, A ∈ Rn×n and B ∈ Rn×m are the hidden state and input transfer matrices,
h ∈ (0, 1], b ∈ Rn. Activation σ is tanh or ReLU.
If B = 0, x(0) = u, then we have a classic ResNet (autonomous).

The state-transfer Jacobian for layer k is :

J(x(k), u) =
∂x(k + 1)

∂x(k)
= I + h

∂σ(∆x(k))

∂∆x(k)
A︸ ︷︷ ︸

residual Jacobian

, (5)

where ∆x(k) is the argument of the activation function σ. Same holds for convolutional layers, where A is
Toeplitz.

NAIS-Net : Non-Autonomous Input-Output Stable
Architecture

B1

B1

x1(1)

A1

u1
block 1

…
B1

A1 A1

B1

…

…B2

B2

A2

block 2

B2

A2

B3

C
la

ss
ifi

er

…BN

BN

AN

block N

BN

AN

BN-1

AN-1

…
AN

BN

…

…

A2

B2

…

…

u1u1 u1 u2 u2u2u2 u3 uN uNuNuN

x1(2) x1(3) x2(1) x2(K2)x2(2) x2(3) xN(1) xN(2) xN(3) xN(KN)x1(K1)

• NAIS-Net architecture is a cascade of a time-invariant dynamical systems.
• Each block is an iterative process as the first layer in the i -th block, xi(1), is unrolled Ki times.
• The skip connections from the input, ui , to all layers in block i make the process non-autonomous.
• Latent space dynamics : each block is modeling the trajectories of the input in different latent space.
• IO-stability and asymptotic stability make the trajectories to be bounded with respect to noise perturbations.
• Each block converges to input-dependent attractors (latent representations).

NAIS-Net block Stability

Take an arbitrarily small scalar σ > 0 and define the set :

P =

{
(x , u) :

∂σi(∆x(k))

∂∆xi(k)
≥ σ, ∀i ∈ [1, 2, . . . , n]

}
. (6)

Stability Condition (from Lyapunov indirect method)
For any small scalar σ > 0, the state Jacobian, J(x , u), satisfies :

ρ̄ := sup
(x ,u)∈P

ρ(J(x , u)) < 1, (7)

where ρ(·) is the spectral radius.

Theorem 1 (Asymptotic stability for shared weights)
If ρ̄ < 1, then the NAIS-Net block is Asymptotically Stable :

• For tanh, x̄ = −A−1(Bu + b).
• For ReLU, x̄ is continuous, piecewise affine in x(0) and u. The network is Locally Asymptotically Stable with

respect to each x̄ .

If ρ̄ < 1, then the NAIS-Net block is Input-Output Stable :

lim
k→∞
‖x(k)− x̄‖ ≤ γ(‖w‖) (8)

The Input-output gain is :

γ(‖w‖) = h
‖B‖

(1− ρ̄)︸ ︷︷ ︸
Lw<∞

‖w‖. (9)

Lw is a Lipschitz constant for infinite layers.
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Stability Implementation

Fully Connected
Stability Reprojection

Input : R ∈ Rñ×n,
ñ ≤ n, δ = 1− 2ε ∈
(0, 1).
if ‖RTR‖F > δ
then

R̃ ←
√
δ R√
‖RTR‖F

else
R̃ ← R

end if
Output : R̃

CNN Stability Reprojection

Input : δ ∈ RNC,C ∈ RnX×nX×NC×NC , and
0 < ε < η < 1
for each feature map c do

δ̃c ← max

(
min

(
δc, 1− η

)
,−1 + η

)
C̃ c
icentre
← −1− δ̃c

if
∑

j 6=icentre

∣∣C c
j

∣∣ > 1− ε− |δ̃c| then

C̃ c
j ←

(
1− ε− |δ̃c|

)
C c
j∑

j 6=icentre|C c
j |

end if
end for
Output : δ̃, C̃

• Each weight matrix A needs to satisfy ρ
(
I + h∂σ(∆x(k))

∂∆x(k) A
)
< 1. Because of the Identity sum the stability region

is translated (similarly as in Forward Euler).
• Proposed reprojection algorithms can be used with any gradient based optimization method to constrain the

weights in the stability region.

Results for Image Classification - CIFAR10-100

Model CIFAR-10 CIFAR-100
train/test train/test

ResNet 99.86±0.03 97.42 ± 0.06
91.72±0.38 66.34 ± 0.82

NAIS-Net1 99.37±0.08 86.90 ± 1.47
91.24±0.10 65.00 ± 0.52

NAIS-Net10 99.50±0.02 86.91 ± 0.42
91.25±0.46 66.07 ± 0.24

CIFAR10-100 : accuracy averaged over 5 runs.

• NAIS-Net has a better lower generalization gap wrt ResNet, as a consequence of robustness to input perturbations.
• NAIS-Net can be trained without requiring batch normalization at each step.

Pattern-Dependent Processing Depth
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• Thanks to stability, NAIS-Net can be unrolled for a variable number of steps until convergence.
• NAIS-Net adapts its depth systematically according to the characteristics of the data.
• Images with similar visual characteristics induce different final depths.
• The depth of the network can be considered as an additional degree of freedom of the model.
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