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Deep Learning at scale since 2013...
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“Deep Learning” Trend
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“Adversarial” Trend
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“Adversarial Examples” Trend



Seminar

Why Deep Learning works so well?
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Black-box models

?
Input Prediction

Model Parameters       
learnt from data
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How can these model parameters 
be interpreted?

We would like to know how NNs compute 
their final answer.
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Feature/Weights Visualization is important

Mapping between a neuron in a layer to the features in the image.

● Understand how and why neural networks work
● Observe the evolution of features during training
● Aid the development of better models (rather than just trial-and-error)
● Diagnose potential problems with the model
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For Neurons in the first hidden layer, 
we can visualize the weights.

A neuron would be activated the most 
if the input looks like the weight matrix.

Visualize the weights: First Layer
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Visualize the weights: First Layer

Very interpretable, applied directly to the pixels. They indicates edge/blob detectors. 
We can also visualize filters at higher layers, but not that interesting.
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Visualize the weights: Last Layer

● Take the 4096-dimensional feature vector for an image (layer immediately before 
the classifier)

● Run the network on many images, collect the feature vectors.
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Last Layer: Nearest Neighbours
L2 Nearest Neighbours in Feature SpaceTest image
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Last Layer: Dimensionality Reduction

Visualize the “space” of FC7 feature vectors by reducing dimensionality of vectors 
from 4096 to 2 dimensions with Principal Component Analysis (PCA) or t-SNE

Images that are nearby each other are also close in the CNN representation space, which implies that the CNN "sees" them as being 
very similar. Notice that the similarities are more often class-based and semantic rather than pixel and color-based.

https://en.wikipedia.org/wiki/Principal_component_analysis
https://lvdmaaten.github.io/tsne/
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What about intermediate layers?
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Visualize patches that maximally activate neurons

1) Pick a layer and a channel (unit of the network):

e.g. conv5 is 128 x 13 x 13, pick channel 17/128

2) Run many images through the network and record activations values of chosen 
channel

3) Sort the proposals from highest to lowest activation, perform NMS
4) Visualize image patches that correspond to maximal activations

This method lets the selected unit “speak for itself” by showing exactly which 
inputs it fires on.

Rich feature hierarchies for accurate object detection and semantic segmentation, Girshick et al

https://arxiv.org/pdf/1311.2524.pdf
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Visualize patches that maximally activate neurons
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Visualize patches that maximally activate neurons
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Visualize patches that maximally activate neurons
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Example: Layer 2

● We are interested in the original images, 
not in the actual input volumes at each 
layer processed by the filters. 

● The effective “receptive field” for a neuron 
is larger than the filter itself (POOL + 
CONV), so it doesn’t make sense to 
directly compare the filters to the original 
images as in the first layer

Maximally activated patches within each 
cell have much in common. 
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Example: Layers 4-5
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Visualize the activations

conv5 feature map is 128x13x13; visualized as 128 13x13 grayscale images
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 Which pixels matter: Occlusions

Mask part of the image before feeding to CNN, check how much predicted 
probabilities change.
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Which pixels matter: Saliency via Backprop

Compute gradient of (unnormalized) class
score with respect to image pixels, take
absolute value and max over RGB channels

Deep Inside Convolutional Networks: 
Visualising Image Classification Models and Saliency Maps, Simonyan et al

https://arxiv.org/abs/1312.6034
https://arxiv.org/abs/1312.6034
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Saliency Maps

Deep Inside Convolutional Networks: 
Visualising Image Classification Models and Saliency Maps, Simonyan et al

https://arxiv.org/abs/1312.6034
https://arxiv.org/abs/1312.6034
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Which Pixels in the Input Affect the Neuron the Most?
Pick a single intermediate neuron, 
e.g. one value in 128 x 13 x 13 conv5 feature 
map.

Compute gradient of neuron value with 
respect to image pixels:

Gradients tell us how changes in x 
affect y. We can interpret the gradient as:
 
how does changing a pixel in the input 
image change the network’s behaviour for 
that input.
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“Deconvolution” vs Guided Backpropagation
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Guided Backpropagation

Idea: neurons act like detectors of particular image features

● We are only interested in what image features the neuron detects (Positive 
Gradients), not in what it doesn’t detect (Negative Gradients). 

● We don’t care if a pixel “suppresses” a neuron somewhere along the part to our 
neuron.

● Guided Backpropagation, keeps only paths that lead to positive influence on 
the class score, and suppress the ones that have negative influence, leading to 
much cleaner looking images.

So when propagating the gradient, all the negative gradients are set to 0. 
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Guided Backpropagation
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Can we synthesize images that maximize 
a specific unit activation?

Of course, with Gradient Optimization!
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Gradient Ascent
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Gradient Ascent
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Visualizing Neurons without Regularization/Priors

Deep Neural Networks are Easily Fooled, Nguyen et al. 

http://www.evolvingai.org/files/DNNsEasilyFooled_cvpr15.pdf
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Visualizing Neurons with Weak Regularization/Priors

Deep Inside Convolutional Networks: Visualising Image Classification, Simonyan at al

Simple regularizer: 
Penalize L2 norm 
of generated image

https://arxiv.org/abs/1312.6034
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Visualizing Neurons with Better Regularization/Priors

Better regularizer: Penalize L2 norm of image; also 
during optimization periodically
(1) Gaussian blur image or Total Variation
(2) Clip pixels with small values to 0
(3) Clip pixels with small gradients to 0

Yosinski et al, “Understanding Neural Networks Through 
Deep Visualization”, ICML DL Workshop 2014.

http://yosinski.com/deepvis
http://yosinski.com/deepvis
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Visualizing Neurons with Better Regularization/Priors
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Visualizing Neurons with Better Regularization/Priors
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https://distill.pub/2017/feature-visualization/ 

https://distill.pub/2017/feature-visualization/
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Can we use these generated images 
to fool Neural Networks?

Unfortunately, yes.
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Adversarial Examples

Szegedy et al. showed that despite their high performances in terms of accuracy, 
modern DNNs are surprisingly susceptible to adversarial attacks in the form 
of small perturbations to images that remains (almost) imperceptible to human 
vision.

That means, adding a well designed noise to an image:

- A Neural Network classifier can completely change its prediction.
- The attacked model report high confidence on the wrong prediction.
- The same perturbation can fool different classifiers.

https://arxiv.org/abs/1312.6199
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Siberian Husky
Husky
Dog

Alaskan Husky
Husky
Dog

Alaskan Malamute
Husky
Dog
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Bananaaa!
Adversarial Noise + Husky
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Timeline

- “Adversarial Classification” Dalvi et al 2004: fool spam filter 

- “Evasion Attacks Against Machine Learning at Test Time” Biggio 2013: fool 
neural nets 

- Szegedy et al 2013: fool ImageNet classifiers imperceptibly

- Goodfellow et al 2014: cheap, closed form attack 

Many other works from this point … 

https://homes.cs.washington.edu/~pedrod/papers/kdd04.pdf
https://arxiv.org/pdf/1712.04248
https://arxiv.org/pdf/1712.04248
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1312.6199
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DL in safety-critical environments

DL is mature enough to be deployed and playing a major role in safety-critical 
environments:

- Self-driving cars
- Surveillance
- Malware Detection
- Drones and Robotics
- Voice Command Recognition
- Facial Recognition in ATM or FaceID in mobile phones
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Examples of issues in real world applications

- Manipulate traffic signs to confuse autonomous vehicles

- Removing segmentation of pedestrians in an object detection system

- Adversarial commands for ASR models and VCS (Siri, Alexa, Cortana)
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Adversarial Example for Autonomous Driving

Adversarial Example for Semantic Image Segmentation, Fischer et al

https://arxiv.org/pdf/1703.01101.pdf
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Physical Adversarial Examples

Adversarial examples in the physical world, Kurakin et al

https://arxiv.org/abs/1607.02533
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Physical Adversarial Examples

http://bair.berkeley.edu/blog/2017/12/30/yolo-attack/

http://bair.berkeley.edu/blog/2017/12/30/yolo-attack/
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Adversarial Patches

Adversarial Patch, Brown et al

https://arxiv.org/pdf/1712.09665
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3D Adversarial Objects

http://www.labsix.org/physical-objects-that-fool-neural-nets/

http://www.labsix.org/physical-objects-that-fool-neural-nets/
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Computer Vision community believed that 
perceptual distances are well approximated by Euclidean 

distances in feature space of deep learning models.

Adversarial examples reveal some contradictions...



Seminar

Additive perturbations

Additivite perturbations: 

The magnitude of the perturbation can be measured with the                   of the 
minimal perturbation that is necessary to change the label of a classifier
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Distance Metrics

1)                            (0-norm counts the number of nonzero coordinates)  

It measures the number of coordinates   such that              . Thus it corresponds to the 
number of pixels that have been altered in an image.

2)

It measures the Euclidean (root mean-square) distance between and       . It can remain 
small when there are many small changes to many pixels.

3)   

It measures the maximum change to any of the coordinates.  For images, we can image there 
is a maximum budget, and each pixel is allowed to be changed up to this limit.
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Structured noise carefully designed to fool a classifier causing a minimal change in 
the input.

The perturbations can be characterized along different dimensions:

● Type of perturbation
● Type of error
● Adversarial Specificity
● Adversary Knowledge

Adversarial Perturbation
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Types of perturbations

Depending on the conditions that one sets on the support of the perturbations     the 
additive model leads to different forms of robustness:

● Adversarial
● Random Noise
● Semi-random Noise
● Universal (image agnostic)
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Types of error

● False Positive (Type I Error): an adversary image unrecognizable to human, 
but predicted by NNs to a class with high confidence.

● False Negative (Type II Error): an image that can be recognized by human, 
but cannot be predicted by NNs (like a malware that is not identified by a 
detection system)
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False positives (Rubbish)

Deep Neural Networks are Easily Fooled, Nguyen et al

http://www.evolvingai.org/files/DNNsEasilyFooled_cvpr15.pdf
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False negatives
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Adversarial Specificity

● Targeted attacks misguide the model to a specific prediction. Usually, in 
multi-class classification problems, the attacker aim at fooling the model to 
predict a specific class. (E.g., Face recognition tries to disguise a face to an 
authorized person)

● Non-targeted attacks do not assign assign a specific class to the neural 
network output. The adversary class of output can be arbitrary expect the 
original one. 
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Adversary Knowledge

● White-box attacks assume the adversary knows everything about the trained 
model (trained data, architecture, hyper-parameters, weights…)

● Black-box attack assume the adversary has no access to the trained model. 
This assumption is common for production systems such as ML web services 
(e.g., ML on AWS, Google Cloud AI, Clarify etc…)

Transferability Property: Most AE attacks are white-box. However, attacks can be 
transferred among models…. (see more later)
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Attacks methods
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False Positive Attacks (EA)

Deep Neural Networks are Easily Fooled, Nguyen et al. (2014)

http://www.evolvingai.org/files/DNNsEasilyFooled_cvpr15.pdf
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False Negative Attacks (Targeted)

Given an image    , find a different image                         that is similar under  
distance, yet is labeled differently by the classifier:

        

This problem can be very difficult to solve because the constraint is highly 
nonlinear, so different techniques exist to approximate adversarial perturbations.

is the network classifier,    is the targeted class
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False Negative Attacks (Non-targeted)

Non-targeted attacks are less constrained and hence easier to implement compared 
to targeted attacks since there are more options and space to redirect the output.

Two ways of generating Non-targeted attacks:
1) Running several targeted attacks and taking the one with the smallest 

perturbation.
2) Minimizing the probability of the correct class.
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Box-constrained L-BFGS attack (           )

Szegedy et al. (2013) first generated small perturbations on images for classification 
problem and fooled state-of-the-asrt DNNs with high probability.

“Line search” is performed to find the constant c > 0 that yields an adversarial 
example of minimum distance, in other words:

- Repeatedly solve this optimization problem for multiple values of c, 
- Adaptively updating c using binary search or any other method for 

one-dimensional optimization.

https://arxiv.org/abs/1312.6199
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It was observed that the robustness of DNNs could be 
improved by “adversarial training”.

L-BFGS attacks are slow, so they can not be used for 
this purpose. 

Goodfellow et al. (2014) proposed a method to 
efficiently compute an adversarial perturbation.

https://www.sri.inf.ethz.ch/riai2017/Explaining%20and%20Harnessing%20Adversarial%20Examples.pdf
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Fast Gradient Sign Method (FGSM,             )

Taking the first-order approximation of the loss function around the true training 
example x with a small perturbation ∆x:

Maximizing the right hand side with respect to ∆x restricted to an ∞-ball of radius 
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Fast Gradient Sign Method (FGSM,             )

The perturbation that maximizes the optimization problem can be expressed 
choosing its magnitude as:

The attack only performs one step gradient update along the direction of the 
sign of gradient at each pixel. 
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Fast Gradient Sign Method (FGSM,             )

● FGSM perturbs an image to increase the loss of the classifier on the resulting 
image.

● Ths sign function ensures that the magnitude of the loss is maximized
●     essentially restrict the   of the perturbation.
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Fast Gradient Value Method (FGVM)

Rozsa et al replace the sign of the gradient with the raw gradient:

FGVM has been developed to seek greater adversarial diversity. 

It has no constraints in each pixel and can generate images with a larger local 
difference.

Adversarial Diversity and Hard Positive Generation, Rozsa et al

https://arxiv.org/abs/1605.01775
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Fast Gradient Value Method (FGVM)

The computed gradient can be normalized with the 

Distributional Smoothing with Virtual Adversarial Training, Myhato et al 

Adversarial Machine Learning at Scale, Kurakin et al

https://arxiv.org/abs/1507.00677
https://arxiv.org/pdf/1611.01236
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One shot / One step methods

Broadly speaking all of these methods in are seen as ‘one-shot’ or ‘one-step’.

Intuitively:

- For each pixel they uses the gradient of the loss function to determine in which 
direction the pixel’s intensity should be changed to maximize the loss function;

- Then, shift all pixels simultaneously in one step.
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Iterative methods

● One step attacks perturb the images by taking a single large step in the 
direction that increases the loss of the classifier (i.e. one-step gradient ascent)

● One step attacks are easy to transfer, but also easy to defend.
● Also, it is important to note that methods such as FGSM attack were designed 

to be fast, rather than optimal. 
● They are not meant to produce the minimal adversarial perturbations.

An intuitive extension of this idea is to iteratively take multiple steps while 
adjusting the direction after each step. 
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Iterative Momentum FGSM

Momentum can be applied to compute the perturbation in a more iterative way. 

The magnitude of the perturbation can be the same of the one generated by the 
one-shot FGSM, but the directions are more precise and the attack is more effective.

NIPS 2017 Adversarial Targeted and Non-targeted Competition Winner

https://arxiv.org/abs/1710.06081
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Basic Iterative Method (BIM)

The number of iterations is determined by the formula 

At each iteration value of the pixels are clipped to avoid large changes.

Madry et al pointed out that BIM is equivalent to the (       version of) Projected 
Gradient Descent (PGD), a standard convex optimization method.

https://arxiv.org/abs/1706.06083


Seminar

Iterative Least-Likely-Class Methods (ILLC)

Extension of BIM where the label of the the image is replaced by the target label of 
the least likely class predicted by the classifier.  

Very effective on SOTA DNNs, also for very small values of epsilon.
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Jacobian-based Saliency Map Attack (JSMA)

The algorithm modifies pixels one at a time and monitors the effects of the change 
on the performance by computing a saliency map using the gradients of the outputs.

Find the feature/pixels that induce the largest change in the output. In the saliency 
map, a large value indicates a higher likelihood to fool the network.

97% adversarial success rate by modifying only 4.02% of the image, but the method 
is slow because its significant computational cost. 
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DeepFool

DeepFool iteratively finds the optimal direction in which we need to travel the 
minimum distance to cross the decision boundary of the target model. 

(Closest distance from original input to the decision boundary)

Although in non-linear cases, this optimality is not guaranteed, DeepFool works well 
in practice performing an iterative attack by linear approximation, and usually 
generates very subtle noise. 
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DeepFool

we assume a classifier

Where     is an arbitrary scalar-valued image classification
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DeepFool: Linear Classifier

Consider first an affine classifier                                 
The robustness of     at point      is equal 
to the distance from       to the 
separating affine hyperplane 

The minimal perturbation to change 
the classifier’s decision corresponds to 
the orthogonal projection of      onto      : 
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DeepFool: General Classifier

For a general binary differentiable classifier, 
an iterative procedure can be used to 
estimate its robustness                

Specifically, at each iteration,    is linearized 
around the current point     and the minimal 
perturbation of the linearized classifier is 
computed as:

The perturbation     at iteration of the algorithm is computed using the closed form solution 
in of the linear case, and the next iterate        is updated. The algorithm stops when 
changes sign of the classifier.
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DeepFool

Multi-class case: Find the closest hyperplane
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Optimization Problem (Recall)

Given an image    , find a different image                         that is similar under  
distance, yet is labeled differently by the classifier:

        

This problem can be very difficult to solve because the constraint is highly 
nonlinear, so different techniques exist to approximate adversarial perturbations.

is the network classifier,    is the targeted class
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Carlini & Wagner’s Attack

Define an optimization problem easier to solve where:

They proposed several objective functions:

Towards Evaluating the Robustness of Neural Networks, Carlini & Wagner

https://arxiv.org/pdf/1608.04644
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Carlini & Wagner’s Attack

LBFGS-B is slow but supports box constrained optimization natively. 

C&W investigated Projected Gradient Descent and other methods to clip the 
coordinates when after each step to be inside the box.

This allows them to use first-order methods such as SGD or Adam to generate high 
quality solutions for the optimization problem converging faster.
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Extreme case, only a single pixel is changed!

Fooling Success Rate of 70.97%

Avg Confidence on the wrong labels 97,47%

Differential evolution is used to generate the 
perturbation, so no information about the model 
parameters or gradients is needed. (Black-box)

One pixel Attack

One pixel attack for fooling deep neural networks, Su et al

https://www.researchgate.net/publication/220380793_Differential_Evolution_A_Survey_of_the_State-of-the-Art
https://arxiv.org/abs/1710.08864
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Can we find a single perturbation that 
fools the classifier on every image?
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Universal additive perturbations

One might be interested to understand if classifiers are also vulnerable to generic 
(data and network agnostic) perturbations because: 

1) They might not require the precise knowledge of the classifier under test
2) They might capture important security and reliability properties of classifiers
3) They show important properties on the geometry of the decision boundary of 

the classifier.
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Universal additive perturbations

A universal perturbation v can be defined as the minimal perturbation that fools a 
large fraction of the data points sampled from the data distribution mu, i.e.,

where     controls the fooling-rate of the universal perturbation. 

Unlike adversarial perturbations that target to fool a specific data point, universal 
perturbations attempt to fool most images sampled from the natural images 
distribution. 

Specifically, by adding this single (image-agnostic) perturbation to a natural image, 
the label estimated by the deep neural network will be changed with high probability.
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Examples of Universal Perturbations

Universal Adversarial Perturbations,  Moosavi-Dezfooli et al

https://arxiv.org/abs/1610.08401
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Black-box attacks 
and transferability
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Adversarial Examples Transferability

Adversarial examples have a transferability property:

“Samples crafted to mislead a model A are likely to mislead also a model B”

(on the same task)

Model A

Model B
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Substitute model attack

Samples PredictionModel A
(Unknown)

ORACLE
E.g., Google Cloud, Clarify, Amazon AWS 

Model B
(Substitute)

Model A
(Unknown)

White Box 
Attack

Transfer
Training
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Intra-technique Transferability

Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples

https://arxiv.org/pdf/1605.07277.pdf
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Cross-technique Transferability

Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples

https://arxiv.org/pdf/1605.07277.pdf
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(Failed) Defenses Techniques
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Gradient defenses

● Most adversarial example construction techniques use the gradient of the model 
to make an attack.

● But what if there were no gradient? what if an infinitesimal modification to 
the image caused no change in the output of the model? 

This seems to provide some defense because the attacker does not know which 
way to “push” the image.
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Knowledge Distillation

Knowledge Distillation was originally introduced in Distilling the Knowledge in a 
Neural Network as a technique for model compression.

At high level:

1) Train a teacher network on the hard labels provided from the training dataset.
2) Collect softmax probabilities.
3) Distill the knowledge into a smaller student network by training on the soft 

probabilities.

Distillation can potentially increase accuracy on the test and reduce overfitting.

https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1503.02531
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Softmax (Recall)

The temperature constant T controls the smoothness of the prediction. 

● Usually in Neural Network is set to 1.
● When T is large the output will be vague (uniform      )

(“Softer predictions”)

● When T is small, only one class is close to 1 while the rest is close to zero.
(“Harder prediction”)
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Defensive Distillation
increases the softmax temperature T to 
reduce the sensitivity to perturbations
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Defensive distillation

1) Train the teacher network, by setting the temperature of the softmax to T 
(~40-50) during the training phase.

2) Compute soft labels by applying the teacher network to each instance in the 
training set, evaluating the softmax at temperature T.

3) Train the distilled student network (with the same capacity) on the soft labels, 
again using softmax at temperature T.

4) Finally, at test time the distilled network is evaluated using temperature T=1.

This creates a model whose surface is smoothed in the directions an adversary 
will typically try to exploit, making it difficult for them to discover adversarial input 
tweaks that lead to incorrect categorization.
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Carlini & Wagner attack defeated 
Defensive Distillation.
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Adversarial Training i.e. Robust Optimization

The most common defence consists of introducing adversarial images to train a 
more robust network, which are generated using the target model:

Brute force solution where we simply generate online a lot of adversarial examples 
and explicitly train the model not to be fooled by each of them.

https://arxiv.org/pdf/1412.6572.pdf
https://arxiv.org/pdf/1412.6572.pdf
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Adversarial Training

Madry et al. (2018) considered an adversarial variant of standard Empirical Risk 
Minimization (ERM), where the aim is to minimize the risk over adversarial 
examples: 

Adversarial training has a natural interpretation in this context, where a given (single 
or iterative step) attack is used to approximate solutions to the inner maximization 
problem, and the outer minimization problem corresponds to training over these 
examples. 

https://arxiv.org/abs/1706.06083
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Adversarial Training

When performing adversarial training with a single-step attack the ERM Equation is 
approximated by replacing the solution to the inner maximization problem:
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The minimizer      could be a model for which the approximation method underlying the 
attack (i.e., linearization in our case) poorly fits the model’s loss function. That is:

The attack when applied to       produces samples           that are far from optimal!

Degenerate Global Minima for Single-Step AdvTrain
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Degenerate Global Minima for Single-Step AdvTrain

Note that this second “degenerate” minimum can be more subtle than a simple case 
of overfitting to samples produced from single-step attacks. 

● That single-step attacks applied to adversarially trained models create 
“adversarial” examples that are easy to classify even for undefended 
models. 

● Thus, adversarial training does not simply learn to resist the particular attack 
used during training, but actually to make that attack perform worse overall.
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Adversarial 
Example

Non-Adversarial 
Example

Move in the direction of 
model’s gradient
(white-box attack)

Move in the direction of 
another model’s gradient

(black-box attack)
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Gradient masking

Small curvature artifacts near the data points obfuscate a linear approximation of the loss. 
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A failed defence: “Gradient masking”

● Instead of learning parameters that make the model robust, it learns parameter 
that make the attacker weaker.

● The degenerate minimum is attainable because the learned model’s 
parameters influence the quality of both the minimization and 
maximization in the adv-ERM problem. 

● We haven’t made the model more robust; we have just given the attacker fewer 
clues to figure out where the holes in the models defense are. 
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A failed defence: “Gradient masking”

Both adversarial training and defensive distillation accidentally perform a kind 
of gradient masking. Neither algorithm was explicitly designed to perform gradient 
masking, but gradient masking is apparently a defense that machine learning 
algorithms can invent relatively easily when they are trained to defend themselves 
and not given specific instructions about how to do so. 

A perturbation in the gradients is introduced, making the white box attacks less 
effective, but the decision boundary remains mostly unchanged after the 
defense. 
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RAND-FGSM

1) Small random step

2) Step in the direction of gradient
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RAND-FGSM

Adding random noise when updating the adversarial example to defeat gradient 
masking issue.

Ensemble Adversarial Training: Attacks and Defenses, Tramèr et al

https://arxiv.org/abs/1705.07204
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Degenerate Global Minima for Single-Step AdvTrain

Solutions:

● One solution is to use a stronger adversarial example generation process, at a 
high performance cost (Madry et al., 2018). 

● Alternatively, Baluja & Fischer (2018) suggest training an adversarial generator 
model as in the GAN framework (Goodfellow et al., 2014). The power of this 
generator is likely to require careful tuning, to avoid similar degenerate minima 
(where the generator or classifier overpowers the other).

https://arxiv.org/pdf/1706.06083.pdf
https://arxiv.org/abs/1703.09387
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Ensemble Adversarial Training

Decoupling the generation of adversarial examples from the model being trained, 
while simultaneously drawing an explicit connection with robustness to black-box 
adversaries. 

Ensemble Adversarial Training, augments a model’s training data with adversarial 
examples crafted on other static pre-trained models. Intuitively, as adversarial 
examples transfer between models, perturbations crafted on an external model are 
good approximations for the maximization problem in (1). 
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Ensemble Adversarial Training

The learned model can not influence the “strength” of the attacker.

As a result, minimizing the “Ensemble Adversarial Training Loss” implies increased 
robustness to black-box attacks from some set of models.
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Parseval Networks

Problem: DNNs are a composition of many nonlinear layers so a small perturbation 
can be amplified very much before reaching the final classification layer.

Idea: constrain the lipschitz constants of each layer to be smaller that 1 so that 
the network lipschitz constant does not explode exponentially (use Parseval Tight 
frame parametrization).

Lipschitz constant: magnitude of the smallest upper bound on the derivative of a function. It limits how 
much a function changes fast with respect to variations of the input.

Parseval Networks: Improving Robustness to Adversarial Examples

https://arxiv.org/abs/1704.08847
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Parseval Networks
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Parseval Networks
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Geometric insights from 
 Adversarial Examples
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Geometric insights from robustness

● The study of robustness allows us to derive insights about the classifiers, more 
precisely, about the geometry of the classification function acting on the 
high dimensional input space.

● The high instability of classifiers to adversarial perturbations shows that natural 
images lie very closely to the classifiers’ decision boundary. But this gives 
no insights on the shape of the decision boundary.

● A local geometric description of the decision boundary (in the vicinity of x) is 
rather captured by the direction of r_adv (x), due to the orthogonality property 
of adversarial perturbations.
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Robustness of Classification Regions

Specific for p=2 norm
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Linearity Hypothesis

adversarial examples are a consequence of CNNs 
acting as a high-dimensional linear classifier.
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Linearity hypothesis

- FGSM exploits the “linearity” of DNNs in the higher dimensional space whereas 
such models were commonly thought to be highly nonlinear. 

- Goodfellow et al. hypothesized that the design of modern DNN that 
(intentionally) encourage linear behaviour for computational gains, also make 
them susceptible to cheap analytical perturbations.

- Luo et al. hypothesized that CNNs are “locally linear” (only for small 
perturbations) only to changes on the regions of the image that contain 
objects recognized by the CNN, otherwise the CNN may act non-linearly.

Foveation-based Mechanisms Alleviate Adversarial Examples, Luo et al

Explaining and Harnessing Adversarial Example, Goodfellow et al

https://arxiv.org/abs/1511.06292
https://arxiv.org/abs/1412.6572
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Geometry of Classification Regions
Low curvature of the decision boundary does 
not imply that the function learned by the deep 
neural network is linear, or even approximately 
linear. 

Figure shows illustrative examples of highly 
nonlinear functions resulting in flat decision 
boundaries.

It should be noted that, while the decision 
boundary of deep networks is very flat on random 
two-dimensional cross sections, these boundaries 
are not flat on all cross sections. That is, there exist 
directions in which the boundary is very curved.
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Geometry of Classification Regions

The curvature profile of deep networks 
is highly sparse (i.e., the decision 
boundaries are almost flat along most 
directions) but can have a very large 
curvature along a few directions and it 
is related to the depth of the network.

In other words: decision boundaries of 
DNNs have a very low curvature in 
many directions, and high curvature 
in only few directions.

Classification regions of deep neural networks, Fawzi et al

https://arxiv.org/abs/1606.05340
https://arxiv.org/abs/1705.09552
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Connected Classification regions

It has been shown empirically that the classification regions are topologically 
connected.  In other words, each classification region in the input space X is 
made up of a single connected (possibly complex) region, rather than 
several disconnected regions.

Classification regions of deep neural networks, Fawzi et al

https://arxiv.org/abs/1705.09552
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Dominant labels

The study of universal perturbations has shown the existence of dominant labels, 
with universal perturbations mostly fooling natural images into such labels. The 
existence of such dominant classes is attributed to the large volumes of 
classification regions corresponding to dominant labels in the input space    :

● in fact, images sampled uniformly at random from the Euclidean sphere  
of the input space    (where the radius a is set to reflect the typical norm of 
natural images) are classified as one of these dominant labels. 

Hence, such dominant labels represent high-volume “oceans” in the image space.
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Dominant labels

Universal perturbations therefore tend to fool images into such target labels, as these 
generally result in smaller fooling perturbations. 

It should be noted that these dominant labels are classifier specific and are not a 
result of the visual properties of the images in the class.

Universal Adversarial Perturbations,  Moosavi-Dezfooli et al

https://arxiv.org/abs/1610.08401
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“Hollow” Classification regions

The norm of the smallest adversarial perturbation needed to change the label of a 
random image (sampled from X ) is several orders of magnitude smaller than the 
norm of the image itself. 

● This observation suggests that classification regions are “hollow” and that 
most of their mass occurs at the boundaries.
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Semantic insights from 
Adversarial Examples
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Neural Networks don’t learn true concepts!

Our best models can be making correct 
predictions for the wrong reasons.
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Neural Networks rely heavily on proxy 
concepts to classify objects

as opposed to strong visual concepts 
typically used by humans to distinguish 

between objects.



Seminar

NNs don’t learn true concepts

Few works nicely demonstrate that classifiers can achieve very high test accuracy 
without actually learning the true concepts of the classes they predict. 

Rather, they can base their prediction on discriminative information, which suffices to 
obtain accurate predictions on test data, however does not reflect learning of the 
true concept that defines specific classes. 
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Example: distinguish vertical and horizontal stripes
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Example: distinguish vertical and horizontal stripes

Example: the goal is to classify images based on the orientation of the stripe. In this 
example, linear classifiers could achieve a perfect recognition rate by exploiting the 
imperceptibly small bias that separates the two classes. 

While this proxy concept achieves zero risk, it is not robust to perturbations!

One could design an additive perturbation that is as simple as a minor variation of 
the bias, which is sufficient to induce data misclassification. 
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Example

Grad-CAM: Visual Explanations from Deep Networks via 
Gradient-based Localization, Selvaraju et al

https://arxiv.org/abs/1610.02391
https://arxiv.org/abs/1610.02391
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NNs don’t learn true concepts

The high instability of classifiers to additive perturbations observed in the literature of 
Adversarial Attacks suggests that deep neural networks potentially capture one of 
the proxy concepts that separate the different classes.

As a result, they can consistently fail in recognizing the true class concept in 
new examples or confidently give wrong predictions on specifically designed 
examples.

Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images

Analysis of classifiers' robustness to adversarial perturbations

Measuring the tendency of CNNs to Learn Surface Statistical Regularities

http://www.evolvingai.org/files/DNNsEasilyFooled_cvpr15.pdf
https://arxiv.org/pdf/1502.02590.pdf
https://arxiv.org/abs/1711.11561
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It is important to tackle adversarial attacks in safety-critical environments.

● Can we force the network to learn “true concepts” instead of easy proxy?

○ Design neural architectures structurally invariant to transformations (e.g. Capsule Networks)

○ Unsupervised learning: disentangling factors of variations

Attack transferability is a threat that needs to be addressed (Black box attacks)

● Can we improve our understanding of the decision boundary/input manifold?
○ Learning robust models geometry aware

○ Detecting and modeling dataset bias

Recap
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Thanks for the attention!

Questions?
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