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Refresh I - Supervised Learning 

- We have an annotated dataset    

- Regression
- Classification

GOAL: 

- Find the mapping between X and Y                                      (parametric model)
- We are looking for an approximator of  the function f(x) that generated our data

Pay attention to overfitting! Keep your model simple! 
We want to be able to predict y for unseen inputs, NOT learning by heart the dataset! 3
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Linear Classification
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Refresh II - Binary Logistic Regression

Use a Linear model to find the mapping between the input and the classes

Reminder on Logistic Regression:

- Problem 

x i  input vectors, y i binary variable. From x predict y. 

Here, our model predicts:

- Loss or Cost function 

5
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Refresh III - Multinomial Logistic Regression

Softmax Regression is Logistic Regression generalization to multiple classes.

- Problem 

x i  input vectors, y i discrete variable between 0 and K-1.

Here, our model predicts:

- Loss or Cost function 

6
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Softmax function

We are going to use this function very much during the course

It takes a vector of arbitrary real-valued scores (in z) and squashes it to a vector of 
values between zero and one that sum to one.

You can interpret                         as the probability of the input z of belonging to the 
class i (outcome of a Categorical Distribution).

7
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Learning is cast as Optimization

8
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As engineers you’re going to do 
only one thing in your life

Optimize a Loss function

9

Life lesson
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How do we minimize the Loss?

We need to find its minimum, setting its derivative to zero and solving it w.r.t. w:

Life is hard: closed-form solutions are practically never available.

Use iterative techniques such as Gradient Descent or fancier algorithms:

10



Cognitive Robotics 2016/2017

Gradient Descent

- Gradient gives you the direction of the steepest ascent
- We want to find the parameters that minimize the Loss
- We step along the direction of the the steepest descent (negative gradient)

11
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Gradient Descent variants
- Batch Gradient Descent

    (Use all the examples of the training set)

- Stochastic Gradient Descent (SGD)

 (Use only one sample)

(Unbiased, but High Variance)

- Minibatch Gradient Descent

(Use a subset of n samples)

(Good variance-computation tradeoff) 12
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Gradient over entire dataset is impractical 
Better to take quick, noisy steps! 

Estimate gradient over a mini-batch of 
examples

13
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Stochastic Gradient Descent (SGD)

Iterative algorithm that performs an update after each (subset of) example(s):

- Initialize the parameters 
- For N iterations

- For each (subset of) training example
-  
-

To apply this algorithm you need to choose:

- The loss function
- The procedure to compute the parameter gradients
- The regularizer term

14

Training epoch
= 

Iterate over all examples
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How do we choose the Loss function?

- Regression - Mean Squared Error (MSE)

- Classification - Cross Entropy (xEntropy)

Be creative! 

The Loss depends on the task you want to solve, but it has one caveat:

Loss must be differentiable!
15
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Refresh IV - Artificial Neuron

▶ Neuron pre-activation

▶ Neuron (output) activation

-  are the connection weights

-  is the neuron bias

-  is the activation function 16

x1 xdxj
… … 

1
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Refresh IV - Artificial Neuron

It could do binary classification:

with sigmoid, can interpret neuron as estimating

This is again Logistic Regression! 

if greater than 0.5, predict class 1

otherwise, predict class 0

17

Decision boundary is Linear!

Images from Hugo Larochelle’s DL 
Summer School Tutorial 
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Refresh IV - Artificial Neuron

- Artificial Neuron can solve linearly separable problems… 

18
Images from Hugo Larochelle’s DL 
Summer School Tutorial 
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Refresh IV - Artificial Neuron

-  But it can’t solve nonlinearly separable problems…

- … unless the input is transformed in a better representation.

19
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Linear models are not powerful enough!
We need nonlinear models:

Neural Networks

20
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Neural Networks
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Refresh V: Feedforward Neural Networks

22

Multilayer Perceptron - MLP - Fully-Connected

- Could have L hidden layers

▶ pre-activation (for any k > 0)

▶  hidden layer activation (k = 1 to L)

▶ output activation (k = L + 1)

… 

… … 1

… … 1

x1 xdxj
… … 1



Cognitive Robotics 2016/2017

The output of each layer of a NN is a 
(nonlinear) combination of its inputs

23

Remember
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Refresh V - Chain rule, Backpropagation

Recall we want to compute the gradient of the loss w.r.t. the weights and update 
them using gradient descent.

Let x be a real number and two functions                    ,

Now consider the composite function , where
Then the derivative of f w.r.t. x can be computed applying the chain rule:

24
Leibniz’s notation
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Backpropagation is a way of computing gradients 
of expressions through recursive application of 

chain rule.

25

NN are complex composite functions
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Activations
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Linear activation

Linear activation function

Partial derivative

Not so interesting… 

27
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Sigmoid

Sigmoid activation function

Partial derivative

28
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Hyperbolic Tangent

Tanh activation function

Partial derivative

29
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Model capacity
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Universal approximation theorem (Hornik, 1991): 

“ A single hidden layer feedforward neural network can 
approximate any measurable function to any desired degree of 
accuracy on a compact set ”

31
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NNs as universal approximators

32
Images from Hugo Larochelle’s DL 
Summer School Tutorial 
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NNs as universal approximators

What does it mean? 

- Regardless of what function we are trying to learn, a large enough MLP will be 
able to represent it.

- The theorem holds for linear, sigmoid, tanh and many other hidden layer 
activation functions.

This is a good result, but it doesn’t mean there is a learning algorithm that 
can find the necessary parameter values!

33
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NNs as universal approximators

In the worse case, an exponential number of hidden units 
may be required.

In summary, a feedforward network with a single layer is 
sufficient to represent any function, but the layer may have to 

be unfeasibly large and may fail to learn and generalize 
correctly.

34
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And Deep Learning save us all… 

35
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Deep Learning 

- Deep learning is research on learning models with multilayer 
representations

- Multilayer (feedforward) neural network 
- Multilayer graphical model (deep belief network, deep Boltzmann machine) 

- Each layer corresponds to a ‘‘distributed representation’’ 
- Units in layer are not mutually exclusive

- each unit is a separate feature of the input
- two units can be ‘‘active’’ at the same time 

- they do not correspond to a partitioning (clustering) of the inputs 
- in clustering, an input can only belong to a single cluster

36
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Distributed Representation I

- It is possible to represent exponential number of regions with a linear number of 

parameters. 

- It can learn a very complicated function (with many ups and downs) with a low 

number of examples (Not true in practice…)

- In non-distributed representations, the number of parameters are linear to the 

number of regions. 

- Here, the number of regions potentially grow exponentially with the number of 

parameters and number of examples. 

37
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Deep Learning - Theoretical justification

A deep architecture can represent certain functions (exponentially) more compactly

Instead of growing our network wider, we grow it deeper

References

- "Learning Deep Architectures for AI", Yoshua Bengio, 2009

- "Exploring Strategies for Training Deep Neural Networks", Larochelle et Al, 2009

- "Shallow vs. Deep Sum-Product Networks",  Delalleau & bengio, 2011

- "On the number of response regions of deep feed forward networks with piece-wise linear activations", 

Pascanu et Al, 2013

38

https://www.iro.umontreal.ca/~lisa/pointeurs/TR1312.pdf
http://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Fall.2016/pdfs/1111/jmlr10_larochelle.pdf
https://papers.nips.cc/paper/4350-shallow-vs-deep-sum-product-networks.pdf
http://arxiv.org/abs/1312.6098
http://arxiv.org/abs/1312.6098
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Distributed Representation II

- Features are individually meaningful. They remain meaningful despite the other 

features. There maybe some interactions but most features are learned 

independent of each other. 

- We don’t need to see all configurations to make a meaningful statement. 

- Non-mutually exclusive features create a combinatorially large set of 

distinguishable configurations. 

39
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Deep Learning - Theoretical justification II

- Using deep architectures expresses a useful prior over the space of functions 
the model learns. 

- Encodes a very general belief that the function we want to learn should involve 
composition of several simpler functions. 

- We can interpret the learning problem as discovering a set of underlying factors 
of variation that can in turn be described in terms of other, simpler underlying 
factors of variation.

40
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Deep Learning - Example

Boolean functions

- A Boolean circuit is a sort of feed-forward network where hidden units 
are logic gates (i.e. AND, OR or NOT functions of their arguments)

- Any Boolean function can be represented by a ‘‘single hidden layer’’ 
Boolean circuit

- however, it might require an exponential number of hidden units 

- It can be shown that there are Boolean functions which
- require an exponential number of hidden units in the single layer case 
- require a polynomial number of hidden units if we can adapt the number of layers

41
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If the function we are trying to learn has a 
particular characteristic obtained through 

composition of many operations, 

then it is better to approximate these functions 
with a deep neural network.

42
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Remark

A deeper network does not correspond 
to a higher capacity. 

Deeper doesn’t mean we can represent more 
functions. 

43
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Training a Deep Neural Network is hard I

First hypothesis

Optimization is harder (underfitting) 

- Vanishing gradient problem 
- Saturated units block gradient 

propagation

This is a well known problem in recurrent 
neural networks (we’ll see in a few lectures)

44

… 

… … 1

… … 1

x1 xdxj
… … 1
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Vanishing gradient

Activation functions such as Sigmoid or 
Tanh, saturates to 1

=> Gradient is close to 0

=> No Gradient, No Learning

BackProp requires several gradient 
multiplications, so if the gradients are 
close to zero, it quickly vanishes.

45

Saturation: 
Zero Gradient
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Rectified Linear Unit I

- ReLU activation function

Partial derivative

46
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Rectified Linear Unit II

Pros

- Faster SGD Convergence: compared to the sigmoid/tanh functions(6x faster). 

It is argued that this is due to its linear, non-saturating form (in +region).

- Sparse activation: For example, in a randomly initialized network, only about 

50% of hidden units are activated (having a non-zero output).

- Efficient gradient propagation: No vanishing or exploding gradient problems.

- Efficient computation: Just thresholding at zero (No exponential funcions).

- Scale-invariant:

47
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Rectified Linear Unit II

Potential problems

- Non-differentiable at zero: however it is differentiable anywhere else, including points 
arbitrarily close to (but not equal to) zero.

- Non-zero centered output
- Unbounded: Could potentially blow up.
- Dying Neurons: ReLU neurons can sometimes be pushed into states in which they 

become inactive for essentially all inputs. No gradients flow backward through the neuron, 
and so the neuron becomes stuck in a perpetually inactive state and "dies".

Large of dead numbers of neurons => decreasing the model capacity 

(Typically arises when the learning rate is set too high)
48



Cognitive Robotics 2016/2017

Rectified Linear Unit III (variants)

- Leaky ReLU: attempt to fix the “dying ReLU” problem. Instead of being zero when x<0, 
a leaky ReLU will instead have a small negative slope (of 0.01, or so).

- pReLU: The slope in the negative region (alpha) become a learned parameter.

- ELU: try to make the mean activations closer to zero which speeds up learning.

alpha tuned by hand

49



Cognitive Robotics 2016/2017

Activations Recap

 

50

ReLU

Leaky ReLU

ELU
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TLDR: What neuron type should I use?

- Use the ReLU nonlinearity

- Be careful with your learning rates and possibly monitor the fraction of “dead” units in a network. 

- If this concerns you, give Leaky ReLU a try. 

- Never use sigmoid. 

- You can try tanh, but expect it to work worse than 
ReLU/LeakyReLU/ELU/Maxout.

51
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Training a Deep Neural Network is hard II

52

Second hypothesis (overfitting) 

- we are exploring a space of complex 
functions

- deep nets usually have lots of 
parameters

Might be in a high variance / low bias 
situation

possible

possible

possible

Good trade-off

Low variance
High bias

High variance
Low bias
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Training a Deep Neural Network is hard II

Depending on the problem, one or the other situation will tend to dominate

- If first hypothesis (underfitting) => need to better optimize 
- Better optimization methods (SGD + Momentum, RMSProp, Adam, Adadelta …) 
- Better parameters initialization
- Better nonlinearities (ReLU …)
- Batch Normalization
- Use GPUs (if you increase your model then you need more power)

- If second hypothesis (overfitting) => use better regularization 
- Unsupervised learning (Not so much nowadays)
- Stochastic «dropout» training

Reference: 

Understanding the difficulty of training Deep Feedforward Neural Networks
53

http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
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Stochastic Regularization: Dropout

Problem of feature co-adaptation: a feature detector is only helpful in the 
context of several other specific feature detectors. 

This is bad and it leads to overfitting!

We want that each neuron learns to detect a feature that is generally helpful for 
producing the correct answer given the combinatorially large variety of internal 

contexts in which it must operate.

54
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Stochastic Regularization: Dropout

Idea: Randomly turn off some neurons of the 
network

- Each hidden unit is set to zero with p 
probability

- Each layer can have a different pi prob 
- Usually set p = 0.5 (It depends on the task)

By randomly omitting neurons we force them to 
learn an independent feature preventing hidden 
units to rely on other units (co-adaptation).

55

… 

… … 1

… … 1

x1 xdxj
… … 1
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Stochastic Regularization: Dropout

- Use binary masks 
- Masks are sampled from Bernoulli distributions 

with probability       , that means:

(1-p) proportion of the layer units are set to zero

This is equivalent to multiplying the weights 
matrix by the binary vector to zero out entire 
rows.

56

… 

… … 1

… … 1

x1 xdxj
… … 1
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Stochastic Regularization: Dropout

Dropout can be seen as an “extreme” ensemble 
method.

We are averaging over different models, because we 
are removing different neurons at each minibatch

Idea: we train a number of weaker classifiers, and 
then at test time we use them by averaging the 
responses of all ensemble members. 

Since each sub-network has been trained separately, 
it has learned different “aspects” of the data and their 
mistakes are different. 57

… 

… … 1

… … 1

x1 xdxj
… … 1
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Stochastic Regularization: Dropout

Inference (Testing) time 

Weight scaling (Approximated inference)

We remove the sampling mask and the weights 
are scaled by a factor of p, in order to maintain 
constant the output magnitude of the network.

This is equivalent to scale the input by 1/p at 
training time with no further scale at test time 
(much simpler)

58

… 

… … 1

… … 1

x1 xdxj
… … 1
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Stochastic Regularization: Dropout

Remark: We have a stochastic model 

We are imposing a distribution over the weights, so in 
theory we should sample several model outputs and 
average them to get an estimate of the expected 
value

MC Dropout: sample several models at test time 
and average them.

- Expensive, but more accurate.
- Not so used unless you want to compute the 

confidence of the model (the variance). 59

… 

… … 1

… … 1

x1 xdxj
… … 1
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Stochastic Regularization: Dropout

 

60
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Stochastic Regularization: Dropout

Reference

Improving neural networks by preventing 
co-adaptation of feature detectors  

Hinton, Srivastava, Krizhevsky, Sutskever and 
Salakhutdinov, 2012.

Dropout: A Simple Way to Prevent Neural Networks 
from Overfitting 

Srivastava, Hinton, Krizhevsky, Sutskever, 
Salakhutdinov

61

… 

… … 1

… … 1

x1 xdxj
… … 1

https://arxiv.org/pdf/1207.0580.pdf
https://arxiv.org/pdf/1207.0580.pdf
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
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How to initialize the weights?

62
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Zero or constant initialization

Don’t do it!

- If every neuron in the network computes the same output, then they will also all 
compute the same gradients during backpropagation and undergo the exact 
same parameter updates. 

In other words, there is no source of asymmetry between neurons if their weights are 
initialized to be the same.

- By the way… You can initialize the biases to zero if you break the symmetry 
with the weights

63
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Small random number initialization

Weights sampled from a Gaussian distribution with :

- zero mean
- 1e-2 standard deviation

Works ~okay for small networks, but problems with deeper 
networks!

64
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Small random number initialization

As always the problem is in the gradient…

If the NN has very small weights also its gradients will be small!

This could greatly diminish the “gradient signal” flowing 
backward through a network, and could become a problem for 
deep networks.

65



Cognitive Robotics 2016/2017

Smarter initializations

- “Xavier initialization” Glorot et Al 2010

A simple explanation  from Andy's blog 

But this mathematical derivation assumes linear activations, and ReLu nonlinearity 
breaks it. We can do better!

- “He initialization” He et Al 2015

Here, the mathematical derivation assumes ReLU activations.

66

http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
http://andyljones.tumblr.com/post/110998971763/an-explanation-of-xavier-initialization
https://arxiv.org/pdf/1502.01852.pdf
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Proper parameters initialization in Neural Networks is an active area of research...

- Understanding the difficulty of training deep feedforward neural networks by Glorot and 
Bengio, 2010

- Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by 
Saxe et al, 2013

- Random walk initialization for training very deep feedforward networks by Sussillo and 
Abbott, 2014

- Delving deep into rectifiers: Surpassing human-level performance on ImageNet 
classification by He et al., 2015

- Data-dependent Initializations of Convolutional Neural Networks by Kra ̈henbühl et al., 
2015

- All you need is a good init, Mishkin and Matas, 2015

Weights initialization

67

http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
https://arxiv.org/abs/1312.6120
https://arxiv.org/abs/1412.6558
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1511.06856
https://arxiv.org/abs/1511.06422
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Internal Covariance Shift

Definition: Change in the input distribution to a learning system. 

In the case of deep networks, the input to each layer is affected by parameters in all 
the input layers. 

Remember: we have a highly nonlinear function, so even small changes to the 
network get amplified down the network. 

This leads to change in the input distribution to internal layers of the deep network 
and is known as internal covariate shift.

68
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Normalization

Normalizing the inputs will speed up training   (Lecun et al. 1998)

It is well established that networks converge faster if the inputs have been whitened 
(ie zero mean, unit variances) and are uncorrelated so internal covariate shift leads to 
just the opposite.

69
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Could normalization also be useful at the 
level of the hidden layers?

Yes, do Batch Normalization 

70
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Batch Normalization

Elegant technique proposed by Ioffe & Szegedy, 2015

- Based on the fact that normalization is a simple differentiable operation. 

- Alleviates a lot of headaches with properly initializing neural networks by 
explicitly forcing the activations throughout the network to take on a 
unit gaussian distribution at the beginning of the training. 

- Consists in putting the BatchNorm layer immediately after fully connected layers 
(or convolutional layers), and before nonlinearities. 

- Can be interpreted as doing preprocessing at every layer of the network, but 
integrated into the network itself in a differentiable way.

71

https://arxiv.org/abs/1502.03167
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Batch Normalization

72

Apply a linear transformation, to 
squash the range, so that the network 
can decide (learn) how much 
normalization needs.

Can also learn 
to recover the 
Identity mapping

Simple Linear operation!
So it can be back-propagated
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Batch Normalization

- Each unit’s pre-activation is normalized (mean subtraction, stddev division) 

- During training, mean and stddev is computed for each minibatch

- Backpropagation takes into account the normalization

- Note: at test time, the global mean / stddev is used

(The global statistics are estimated using running averages during the training)

73
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- Improves gradient flow through the network

- Allows higher learning rates

- Reduces the strong dependence on initialization

- Acts as a form of regularization

- slightly reduces the need for dropout

Batch Normalization

74

Fully Connected

Batch Norm

ReLU
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