
Cognitive Robotics 2016/2017

Linear Models, MLPs,
Deep Neural Networks

Cognitive Robotics

Marco Ciccone
Dipartimento di Informatica Elettronica e Bioingegneria

Politecnico di Milano

Cognitive Robotics 2016/2017

Cognitive Robotics 2016/2017

Outline

- Intro
- Recap on Linear Models
- Gradient Descents
- Loss functions
- Activations
- Neural Networks

- Difficulties in training
- Model capacity
- Vanishing gradient

- Deep Learning
- Motivations
- Theoretical foundations
- Dropout
- Batch Normalization 2

Cognitive Robotics 2016/2017

Refresh I - Supervised Learning

- We have an annotated dataset

- Regression
- Classification

GOAL:

- Find the mapping between X and Y (parametric model)
- We are looking for an approximator of the function f(x) that generated our data

Pay attention to overfitting! Keep your model simple!
We want to be able to predict y for unseen inputs, NOT learning by heart the dataset! 3

Cognitive Robotics 2016/2017

Linear Classification

Cognitive Robotics 2016/2017

Refresh II - Binary Logistic Regression

Use a Linear model to find the mapping between the input and the classes

Reminder on Logistic Regression:

- Problem

x i input vectors, y i binary variable. From x predict y.

Here, our model predicts:

- Loss or Cost function

5

Cognitive Robotics 2016/2017

Refresh III - Multinomial Logistic Regression

Softmax Regression is Logistic Regression generalization to multiple classes.

- Problem

x i input vectors, y i discrete variable between 0 and K-1.

Here, our model predicts:

- Loss or Cost function

6

Cognitive Robotics 2016/2017

Softmax function

We are going to use this function very much during the course

It takes a vector of arbitrary real-valued scores (in z) and squashes it to a vector of
values between zero and one that sum to one.

You can interpret as the probability of the input z of belonging to the
class i (outcome of a Categorical Distribution).

7

Cognitive Robotics 2016/2017

Learning is cast as Optimization

8

Cognitive Robotics 2016/2017

As engineers you’re going to do
only one thing in your life

Optimize a Loss function

9

Life lesson

Cognitive Robotics 2016/2017

How do we minimize the Loss?

We need to find its minimum, setting its derivative to zero and solving it w.r.t. w:

Life is hard: closed-form solutions are practically never available.

Use iterative techniques such as Gradient Descent or fancier algorithms:

10

Cognitive Robotics 2016/2017

Gradient Descent

- Gradient gives you the direction of the steepest ascent
- We want to find the parameters that minimize the Loss
- We step along the direction of the the steepest descent (negative gradient)

11

Cognitive Robotics 2016/2017

Gradient Descent variants
- Batch Gradient Descent

 (Use all the examples of the training set)

- Stochastic Gradient Descent (SGD)

 (Use only one sample)

(Unbiased, but High Variance)

- Minibatch Gradient Descent

(Use a subset of n samples)

(Good variance-computation tradeoff) 12

Cognitive Robotics 2016/2017

Gradient over entire dataset is impractical
Better to take quick, noisy steps!

Estimate gradient over a mini-batch of
examples

13

Cognitive Robotics 2016/2017

Stochastic Gradient Descent (SGD)

Iterative algorithm that performs an update after each (subset of) example(s):

- Initialize the parameters
- For N iterations

- For each (subset of) training example
-
-

To apply this algorithm you need to choose:

- The loss function
- The procedure to compute the parameter gradients
- The regularizer term

14

Training epoch
=

Iterate over all examples

Cognitive Robotics 2016/2017

How do we choose the Loss function?

- Regression - Mean Squared Error (MSE)

- Classification - Cross Entropy (xEntropy)

Be creative!

The Loss depends on the task you want to solve, but it has one caveat:

Loss must be differentiable!
15

Cognitive Robotics 2016/2017

Refresh IV - Artificial Neuron

▶ Neuron pre-activation

▶ Neuron (output) activation

- are the connection weights

- is the neuron bias

- is the activation function 16

x1 xdxj
… …

1

Cognitive Robotics 2016/2017

Refresh IV - Artificial Neuron

It could do binary classification:

with sigmoid, can interpret neuron as estimating

This is again Logistic Regression!

if greater than 0.5, predict class 1

otherwise, predict class 0

17

Decision boundary is Linear!

Images from Hugo Larochelle’s DL
Summer School Tutorial

Cognitive Robotics 2016/2017

Refresh IV - Artificial Neuron

- Artificial Neuron can solve linearly separable problems…

18
Images from Hugo Larochelle’s DL
Summer School Tutorial

Cognitive Robotics 2016/2017

Refresh IV - Artificial Neuron

- But it can’t solve nonlinearly separable problems…

- … unless the input is transformed in a better representation.

19

Cognitive Robotics 2016/2017

Linear models are not powerful enough!
We need nonlinear models:

Neural Networks

20

Cognitive Robotics 2016/2017

Neural Networks

Cognitive Robotics 2016/2017

Refresh V: Feedforward Neural Networks

22

Multilayer Perceptron - MLP - Fully-Connected

- Could have L hidden layers

▶ pre-activation (for any k > 0)

▶ hidden layer activation (k = 1 to L)

▶ output activation (k = L + 1)

…

… … 1

… … 1

x1 xdxj
… … 1

Cognitive Robotics 2016/2017

The output of each layer of a NN is a
(nonlinear) combination of its inputs

23

Remember

Cognitive Robotics 2016/2017

Refresh V - Chain rule, Backpropagation

Recall we want to compute the gradient of the loss w.r.t. the weights and update
them using gradient descent.

Let x be a real number and two functions ,

Now consider the composite function , where
Then the derivative of f w.r.t. x can be computed applying the chain rule:

24
Leibniz’s notation

Cognitive Robotics 2016/2017

Backpropagation is a way of computing gradients
of expressions through recursive application of

chain rule.

25

NN are complex composite functions

Cognitive Robotics 2016/2017

Activations

Cognitive Robotics 2016/2017

Linear activation

Linear activation function

Partial derivative

Not so interesting…

27

Cognitive Robotics 2016/2017

Sigmoid

Sigmoid activation function

Partial derivative

28

Cognitive Robotics 2016/2017

Hyperbolic Tangent

Tanh activation function

Partial derivative

29

Cognitive Robotics 2016/2017

Model capacity

Cognitive Robotics 2016/2017

Universal approximation theorem (Hornik, 1991):

“ A single hidden layer feedforward neural network can
approximate any measurable function to any desired degree of
accuracy on a compact set ”

31

Cognitive Robotics 2016/2017

NNs as universal approximators

32
Images from Hugo Larochelle’s DL
Summer School Tutorial

Cognitive Robotics 2016/2017

NNs as universal approximators

What does it mean?

- Regardless of what function we are trying to learn, a large enough MLP will be
able to represent it.

- The theorem holds for linear, sigmoid, tanh and many other hidden layer
activation functions.

This is a good result, but it doesn’t mean there is a learning algorithm that
can find the necessary parameter values!

33

Cognitive Robotics 2016/2017

NNs as universal approximators

In the worse case, an exponential number of hidden units
may be required.

In summary, a feedforward network with a single layer is
sufficient to represent any function, but the layer may have to

be unfeasibly large and may fail to learn and generalize
correctly.

34

Cognitive Robotics 2016/2017

And Deep Learning save us all…

35

Cognitive Robotics 2016/2017

Deep Learning

- Deep learning is research on learning models with multilayer
representations

- Multilayer (feedforward) neural network
- Multilayer graphical model (deep belief network, deep Boltzmann machine)

- Each layer corresponds to a ‘‘distributed representation’’
- Units in layer are not mutually exclusive

- each unit is a separate feature of the input
- two units can be ‘‘active’’ at the same time

- they do not correspond to a partitioning (clustering) of the inputs
- in clustering, an input can only belong to a single cluster

36

Cognitive Robotics 2016/2017

Distributed Representation I

- It is possible to represent exponential number of regions with a linear number of

parameters.

- It can learn a very complicated function (with many ups and downs) with a low

number of examples (Not true in practice…)

- In non-distributed representations, the number of parameters are linear to the

number of regions.

- Here, the number of regions potentially grow exponentially with the number of

parameters and number of examples.

37

Cognitive Robotics 2016/2017

Deep Learning - Theoretical justification

A deep architecture can represent certain functions (exponentially) more compactly

Instead of growing our network wider, we grow it deeper

References

- "Learning Deep Architectures for AI", Yoshua Bengio, 2009

- "Exploring Strategies for Training Deep Neural Networks", Larochelle et Al, 2009

- "Shallow vs. Deep Sum-Product Networks", Delalleau & bengio, 2011

- "On the number of response regions of deep feed forward networks with piece-wise linear activations",

Pascanu et Al, 2013

38

https://www.iro.umontreal.ca/~lisa/pointeurs/TR1312.pdf
http://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Fall.2016/pdfs/1111/jmlr10_larochelle.pdf
https://papers.nips.cc/paper/4350-shallow-vs-deep-sum-product-networks.pdf
http://arxiv.org/abs/1312.6098
http://arxiv.org/abs/1312.6098

Cognitive Robotics 2016/2017

Distributed Representation II

- Features are individually meaningful. They remain meaningful despite the other

features. There maybe some interactions but most features are learned

independent of each other.

- We don’t need to see all configurations to make a meaningful statement.

- Non-mutually exclusive features create a combinatorially large set of

distinguishable configurations.

39

Cognitive Robotics 2016/2017

Deep Learning - Theoretical justification II

- Using deep architectures expresses a useful prior over the space of functions
the model learns.

- Encodes a very general belief that the function we want to learn should involve
composition of several simpler functions.

- We can interpret the learning problem as discovering a set of underlying factors
of variation that can in turn be described in terms of other, simpler underlying
factors of variation.

40

Cognitive Robotics 2016/2017

Deep Learning - Example

Boolean functions

- A Boolean circuit is a sort of feed-forward network where hidden units
are logic gates (i.e. AND, OR or NOT functions of their arguments)

- Any Boolean function can be represented by a ‘‘single hidden layer’’
Boolean circuit

- however, it might require an exponential number of hidden units

- It can be shown that there are Boolean functions which
- require an exponential number of hidden units in the single layer case
- require a polynomial number of hidden units if we can adapt the number of layers

41

Cognitive Robotics 2016/2017

If the function we are trying to learn has a
particular characteristic obtained through

composition of many operations,

then it is better to approximate these functions
with a deep neural network.

42

Cognitive Robotics 2016/2017

Remark

A deeper network does not correspond
to a higher capacity.

Deeper doesn’t mean we can represent more
functions.

43

Cognitive Robotics 2016/2017

Training a Deep Neural Network is hard I

First hypothesis

Optimization is harder (underfitting)

- Vanishing gradient problem
- Saturated units block gradient

propagation

This is a well known problem in recurrent
neural networks (we’ll see in a few lectures)

44

…

… … 1

… … 1

x1 xdxj
… … 1

Cognitive Robotics 2016/2017

Vanishing gradient

Activation functions such as Sigmoid or
Tanh, saturates to 1

=> Gradient is close to 0

=> No Gradient, No Learning

BackProp requires several gradient
multiplications, so if the gradients are
close to zero, it quickly vanishes.

45

Saturation:
Zero Gradient

Cognitive Robotics 2016/2017

Rectified Linear Unit I

- ReLU activation function

Partial derivative

46

Cognitive Robotics 2016/2017

Rectified Linear Unit II

Pros

- Faster SGD Convergence: compared to the sigmoid/tanh functions(6x faster).

It is argued that this is due to its linear, non-saturating form (in +region).

- Sparse activation: For example, in a randomly initialized network, only about

50% of hidden units are activated (having a non-zero output).

- Efficient gradient propagation: No vanishing or exploding gradient problems.

- Efficient computation: Just thresholding at zero (No exponential funcions).

- Scale-invariant:

47

Cognitive Robotics 2016/2017

Rectified Linear Unit II

Potential problems

- Non-differentiable at zero: however it is differentiable anywhere else, including points
arbitrarily close to (but not equal to) zero.

- Non-zero centered output
- Unbounded: Could potentially blow up.
- Dying Neurons: ReLU neurons can sometimes be pushed into states in which they

become inactive for essentially all inputs. No gradients flow backward through the neuron,
and so the neuron becomes stuck in a perpetually inactive state and "dies".

Large of dead numbers of neurons => decreasing the model capacity

(Typically arises when the learning rate is set too high)
48

Cognitive Robotics 2016/2017

Rectified Linear Unit III (variants)

- Leaky ReLU: attempt to fix the “dying ReLU” problem. Instead of being zero when x<0,
a leaky ReLU will instead have a small negative slope (of 0.01, or so).

- pReLU: The slope in the negative region (alpha) become a learned parameter.

- ELU: try to make the mean activations closer to zero which speeds up learning.

alpha tuned by hand

49

Cognitive Robotics 2016/2017

Activations Recap

50

ReLU

Leaky ReLU

ELU

Cognitive Robotics 2016/2017

TLDR: What neuron type should I use?

- Use the ReLU nonlinearity

- Be careful with your learning rates and possibly monitor the fraction of “dead” units in a network.

- If this concerns you, give Leaky ReLU a try.

- Never use sigmoid.

- You can try tanh, but expect it to work worse than
ReLU/LeakyReLU/ELU/Maxout.

51

Cognitive Robotics 2016/2017

Training a Deep Neural Network is hard II

52

Second hypothesis (overfitting)

- we are exploring a space of complex
functions

- deep nets usually have lots of
parameters

Might be in a high variance / low bias
situation

possible

possible

possible

Good trade-off

Low variance
High bias

High variance
Low bias

Cognitive Robotics 2016/2017

Training a Deep Neural Network is hard II

Depending on the problem, one or the other situation will tend to dominate

- If first hypothesis (underfitting) => need to better optimize
- Better optimization methods (SGD + Momentum, RMSProp, Adam, Adadelta …)
- Better parameters initialization
- Better nonlinearities (ReLU …)
- Batch Normalization
- Use GPUs (if you increase your model then you need more power)

- If second hypothesis (overfitting) => use better regularization
- Unsupervised learning (Not so much nowadays)
- Stochastic «dropout» training

Reference:

Understanding the difficulty of training Deep Feedforward Neural Networks
53

http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf

Cognitive Robotics 2016/2017

Stochastic Regularization: Dropout

Problem of feature co-adaptation: a feature detector is only helpful in the
context of several other specific feature detectors.

This is bad and it leads to overfitting!

We want that each neuron learns to detect a feature that is generally helpful for
producing the correct answer given the combinatorially large variety of internal

contexts in which it must operate.

54

Cognitive Robotics 2016/2017

Stochastic Regularization: Dropout

Idea: Randomly turn off some neurons of the
network

- Each hidden unit is set to zero with p
probability

- Each layer can have a different pi prob
- Usually set p = 0.5 (It depends on the task)

By randomly omitting neurons we force them to
learn an independent feature preventing hidden
units to rely on other units (co-adaptation).

55

…

… … 1

… … 1

x1 xdxj
… … 1

Cognitive Robotics 2016/2017

Stochastic Regularization: Dropout

- Use binary masks
- Masks are sampled from Bernoulli distributions

with probability , that means:

(1-p) proportion of the layer units are set to zero

This is equivalent to multiplying the weights
matrix by the binary vector to zero out entire
rows.

56

…

… … 1

… … 1

x1 xdxj
… … 1

Cognitive Robotics 2016/2017

Stochastic Regularization: Dropout

Dropout can be seen as an “extreme” ensemble
method.

We are averaging over different models, because we
are removing different neurons at each minibatch

Idea: we train a number of weaker classifiers, and
then at test time we use them by averaging the
responses of all ensemble members.

Since each sub-network has been trained separately,
it has learned different “aspects” of the data and their
mistakes are different. 57

…

… … 1

… … 1

x1 xdxj
… … 1

Cognitive Robotics 2016/2017

Stochastic Regularization: Dropout

Inference (Testing) time

Weight scaling (Approximated inference)

We remove the sampling mask and the weights
are scaled by a factor of p, in order to maintain
constant the output magnitude of the network.

This is equivalent to scale the input by 1/p at
training time with no further scale at test time
(much simpler)

58

…

… … 1

… … 1

x1 xdxj
… … 1

Cognitive Robotics 2016/2017

Stochastic Regularization: Dropout

Remark: We have a stochastic model

We are imposing a distribution over the weights, so in
theory we should sample several model outputs and
average them to get an estimate of the expected
value

MC Dropout: sample several models at test time
and average them.

- Expensive, but more accurate.
- Not so used unless you want to compute the

confidence of the model (the variance). 59

…

… … 1

… … 1

x1 xdxj
… … 1

Cognitive Robotics 2016/2017

Stochastic Regularization: Dropout

60

Cognitive Robotics 2016/2017

Stochastic Regularization: Dropout

Reference

Improving neural networks by preventing
co-adaptation of feature detectors

Hinton, Srivastava, Krizhevsky, Sutskever and
Salakhutdinov, 2012.

Dropout: A Simple Way to Prevent Neural Networks
from Overfitting

Srivastava, Hinton, Krizhevsky, Sutskever,
Salakhutdinov

61

…

… … 1

… … 1

x1 xdxj
… … 1

https://arxiv.org/pdf/1207.0580.pdf
https://arxiv.org/pdf/1207.0580.pdf
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html

Cognitive Robotics 2016/2017

How to initialize the weights?

62

Cognitive Robotics 2016/2017

Zero or constant initialization

Don’t do it!

- If every neuron in the network computes the same output, then they will also all
compute the same gradients during backpropagation and undergo the exact
same parameter updates.

In other words, there is no source of asymmetry between neurons if their weights are
initialized to be the same.

- By the way… You can initialize the biases to zero if you break the symmetry
with the weights

63

Cognitive Robotics 2016/2017

Small random number initialization

Weights sampled from a Gaussian distribution with :

- zero mean
- 1e-2 standard deviation

Works ~okay for small networks, but problems with deeper
networks!

64

Cognitive Robotics 2016/2017

Small random number initialization

As always the problem is in the gradient…

If the NN has very small weights also its gradients will be small!

This could greatly diminish the “gradient signal” flowing
backward through a network, and could become a problem for
deep networks.

65

Cognitive Robotics 2016/2017

Smarter initializations

- “Xavier initialization” Glorot et Al 2010

A simple explanation from Andy's blog

But this mathematical derivation assumes linear activations, and ReLu nonlinearity
breaks it. We can do better!

- “He initialization” He et Al 2015

Here, the mathematical derivation assumes ReLU activations.

66

http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
http://andyljones.tumblr.com/post/110998971763/an-explanation-of-xavier-initialization
https://arxiv.org/pdf/1502.01852.pdf

Cognitive Robotics 2016/2017

Proper parameters initialization in Neural Networks is an active area of research...

- Understanding the difficulty of training deep feedforward neural networks by Glorot and
Bengio, 2010

- Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by
Saxe et al, 2013

- Random walk initialization for training very deep feedforward networks by Sussillo and
Abbott, 2014

- Delving deep into rectifiers: Surpassing human-level performance on ImageNet
classification by He et al., 2015

- Data-dependent Initializations of Convolutional Neural Networks by Kra ̈henbühl et al.,
2015

- All you need is a good init, Mishkin and Matas, 2015

Weights initialization

67

http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
https://arxiv.org/abs/1312.6120
https://arxiv.org/abs/1412.6558
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1511.06856
https://arxiv.org/abs/1511.06422

Cognitive Robotics 2016/2017

Internal Covariance Shift

Definition: Change in the input distribution to a learning system.

In the case of deep networks, the input to each layer is affected by parameters in all
the input layers.

Remember: we have a highly nonlinear function, so even small changes to the
network get amplified down the network.

This leads to change in the input distribution to internal layers of the deep network
and is known as internal covariate shift.

68

Cognitive Robotics 2016/2017

Normalization

Normalizing the inputs will speed up training (Lecun et al. 1998)

It is well established that networks converge faster if the inputs have been whitened
(ie zero mean, unit variances) and are uncorrelated so internal covariate shift leads to
just the opposite.

69

Cognitive Robotics 2016/2017

Could normalization also be useful at the
level of the hidden layers?

Yes, do Batch Normalization

70

Cognitive Robotics 2016/2017

Batch Normalization

Elegant technique proposed by Ioffe & Szegedy, 2015

- Based on the fact that normalization is a simple differentiable operation.

- Alleviates a lot of headaches with properly initializing neural networks by
explicitly forcing the activations throughout the network to take on a
unit gaussian distribution at the beginning of the training.

- Consists in putting the BatchNorm layer immediately after fully connected layers
(or convolutional layers), and before nonlinearities.

- Can be interpreted as doing preprocessing at every layer of the network, but
integrated into the network itself in a differentiable way.

71

https://arxiv.org/abs/1502.03167

Cognitive Robotics 2016/2017

Batch Normalization

72

Apply a linear transformation, to
squash the range, so that the network
can decide (learn) how much
normalization needs.

Can also learn
to recover the
Identity mapping

Simple Linear operation!
So it can be back-propagated

Cognitive Robotics 2016/2017

Batch Normalization

- Each unit’s pre-activation is normalized (mean subtraction, stddev division)

- During training, mean and stddev is computed for each minibatch

- Backpropagation takes into account the normalization

- Note: at test time, the global mean / stddev is used

(The global statistics are estimated using running averages during the training)

73

Cognitive Robotics 2016/2017

- Improves gradient flow through the network

- Allows higher learning rates

- Reduces the strong dependence on initialization

- Acts as a form of regularization

- slightly reduces the need for dropout

Batch Normalization

74

Fully Connected

Batch Norm

ReLU

Cognitive Robotics 2016/2017

Acknowledgements

This slides are highly based on material taken from:

- Hugo Larochelle
- Andrej Karpathy
- Laurent Dinh

75

