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CNNs are good for images because 
exploit their inherent spatial structure

Recap
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Now we want to deal with sequential data
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Feedforward Neural Networks treat 
input samples independently of the others

Information is propagated from the inputs 
to the outputs and only goes in one 

direction
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Autoregressive models

Predict the next input in a sequence from a fixed number of previous inputs using 
“delay taps”.

Feed-forward neural networks

Generalize autoregressive models by using nonlinear hidden layers.

Memoryless models for sequences

input t-2 input t-1 input t

input t-2 input t-1 input t

Hidden
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Beyond memoryless models 

If we give add to a generative model some hidden state, and this hidden state has 
its own internal dynamics (memory), we get a much more interesting kind of model 
(State-Space models, Dynamical Systems… )

- It can store information in its hidden state for a long time. 
- If the dynamics is noisy and the way it generates outputs from its hidden 

state is noisy, we can never know its exact hidden state.
- The best we can do is to infer a probability distribution over the space of hidden 

state vectors. 

This inference is only tractable for two types of hidden state model!
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Example 1: Linear Dynamical Systems 

These are generative models. 

They have a real valued hidden state that 
cannot be observed directly.

- The hidden state has linear dynamics 
with Gaussian noise and produces the 
observations using a linear model with 
Gaussian noise. 

- (There may also be driving inputs)

To predict the next output  we need to infer 
the hidden state. How?
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A linearly transformed Gaussian is again Gaussian!

So the distribution over the hidden state given the 
data so far is Gaussian. 

It can be computed using “Kalman filtering”.
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Example 2: Hidden Markov Models

Discrete state, arbitrary observation type

- State is not observed, must be inferred. 
- Represent probability across N states with N 

numbers. 
- Efficient algorithms exist for HMM inference 

(Viterbi Algorithm)
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RNNs properties

RNNs are very powerful, because they combine two properties:

- Distributed hidden state that allows them to store a lot of information about 
the past efficiently.

- Nonlinear dynamics that allows them to update their hidden state in 
complicated ways.
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Stochastic vs Deterministic

Linear dynamical systems and hidden Markov models are stochastic models:

- But the posterior probability distribution over their hidden states given the 
observed data so far is a deterministic function of the data.

Recurrent neural networks are deterministic models:

- You can think of the hidden state of an RNN as the equivalent of the 
deterministic probability distribution over hidden states in a linear dynamical 
system or hidden Markov model. 
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Remember Universal Approximation thm?
RNNs can do even more!
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RNNs are Turing Complete!

With enough neurons and time, RNNs can 
compute anything that can be computed 

by a computer.
http://binds.cs.umass.edu/papers/
1995_Siegelmann_Science.pdf

http://binds.cs.umass.edu/papers/1995_Siegelmann_Science.pdf
http://binds.cs.umass.edu/papers/1995_Siegelmann_Science.pdf
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Sequential data

Fixed-sized 
input 
to fixed-sized 
output 
(e.g. image 
classification)

Sequence output 
(e.g. image captioning 
takes an image and 
outputs a sentence of 
words). 

Sequence input (e.g. 
sentiment analysis 
where a given sentence 
is classified as 
expressing positive or 
negative sentiment).

Sequence input and 
sequence output (e.g. 
Machine Translation: an 
RNN reads a sentence 
in English and then 
outputs a sentence in 
French)

Synced sequence 
input and output (e.g. 
video classification 
where we wish to label 
each frame of the 
video)

Credits: Andrej Karpathy



Cognitive Robotics 2016/2017

Each one of these tasks can be 
considered as a translation from one 

signal to another
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Even if your data are not sequential you 
can decide to process them sequentially

Remark
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Example: ReNet Layer

4 RNNs that scans the pixels of the image in 
different directions:

- Top-Down + Bottom-Up
- Left-Right + Right-Left

Reference:

- ReNet, Visin et Al.
- ReSeg, Visin, Ciccone et Al.   
- Code: https://github.com/fvisin/reseg

https://arxiv.org/abs/1505.00393
https://arxiv.org/pdf/1511.07053.pdf
https://github.com/fvisin/reseg
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Recurrent Neural Networks (RNNs)

- We introduce the notion of sequentiality to the model
- RNNs extend classical Feed-forward NNs with feedback connections to the 

hidden units.
- Through these connections the model can retain information about the past, 

enabling it to discover correlations between input samples

Old state
new state

Parametric function

Input



Cognitive Robotics 2016/2017

Weight sharing through time steps

A recurrent neural network can be thought of as multiple copies of the same 
network, each passing a message to a successor. 

The same function and the same parameters are shared at every time step.

Unrolled view of a Recurrent Neural Network
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An unrolled RNN can be seen as a Deep 
Feedforward Neural Network

Remark
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Backpropagation Through Time (BPTT)

Forward through entire sequence to compute loss, then backward through entire 
sequence to compute gradient.

Gradients are obtained by applying chain rule on the unrolled graph 

Image from
Karpathy’s 
class CS231n
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Truncated Backpropagation Through Time

Because of memory constraint if the sequence is very long we cannot 
backpropagate through the entire sequence length.

Solution I: Run forward and backward through chunks of the sequence instead of 
whole sequence

Solution II: Carry hidden states forward in time forever, but only backpropagate for 
some smaller number of steps
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Truncated Backpropagation Through Time I

Run forward and backward 
through chunks of the 
sequence

Image from
Karpathy’s 
class CS231n
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Truncated Backpropagation Through Time II

 Forward in time forever, but only 
backpropagate for some smaller 
number of steps

Image from
Karpathy’s 
class CS231n
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Learning long-term dependencies is hard

With internal state, the network can “remember” things for a long time. 

Can decide to ignore input for a while if it wants to… BUT 

- It is very hard to train an RNN to store information that’s not needed for 
a long time.

- In principle, the internal state can carry information about a potentially 
unbounded number of previous inputs.
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Short-term dependencies

Where the gap between the relevant information and the place that it’s needed is 
small, RNNs can learn to use the past information.
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Long-term dependencies

Unfortunately, as that gap grows, RNNs become unable to learn to connect the 
information.
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Why training RNNs is hard?

- Vanishing gradient: the error signal from later time steps cannot go enough 
back in time to influence the network at earlier time steps. This makes it difficult 
to learn long-term dependencies making it impossible for the model to learn 
correlation between temporally distant events.

- Exploding gradient: the error signal accumulates and explode
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Vanishing and Exploding Gradient

 

Sorry for changing the 
notation :)
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Vanishing and Exploding Gradient

 

Max singular value
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Vanishing and Exploding Gradient
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Vanishing and Exploding Gradient

Considering the spectral radius:

- It is sufficient to be             for long term components to vanish    
- and necessary for  for them to explode 

Note: this result is true for linear functions, but can be generalized for nonlinear ones 
using the max singular value        
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Vanilla RNN cell

The repeating module in a standard RNN contains a single layer
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Naive (Not Working) Solution

Solution: We don’t have vanishing or exploding gradient but...

Problem: It’s not a very good memory, it’s just accumulating the input! 

We need to know when and how much to read, input, output, forget….

Changing again the notation… 
You can thank me later :) 
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An elegant solution

Long Short Term Memory, Sepp Hochreiter,  J�urgen Schmidhuber, 1997
http://www.bioinf.jku.at/publications/older/2604.pdf

http://www.bioinf.jku.at/publications/older/2604.pdf
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Long Short-Term Memory (LSTM)

The repeating module in an LSTM contains four interacting layers.
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Cell Memory

The core idea of LSTM is to have a cell memory with only some minor linear 
interactions. It’s very easy for information to just flow along it unchanged.
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Gates

The LSTM does have the ability to remove or add information to the cell state, 
carefully regulated by structures called gates

Gates are a way to optionally let information through 

They are composed out of:

- a sigmoid neural net layer
- a pointwise multiplication operation

The sigmoid layer outputs numbers between zero and one, describing how much of 
each component should be let through. A value of zero means “let nothing through,” 
while a value of one means “let everything through!”
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LSTM learns from data the behavior of the 
gates
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Forget Gate

Decide what (how much) information we’re going to throw away from the cell state 
It uses a sigmoid where 1 represents “completely keep this” while a 0 represents 
“completely get rid of this.”
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Input Gate

Decide what new information we’re going to store in the cell state. This has two 
parts:

- A sigmoid layer called the “input gate layer” decides which values we’ll update.

- A tanh layer creates a vector of new candidate values, C ̃t, that could be added 
to the state. 
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Update memory cell

We need to update the old cell state, Ct−i  into the new cell state Ct 

- We multiply the old state by the forget gate, forgetting the things we decided to 
forget earlier. 

- Then we add the new candidate values, scaled by how much we decided to 
update each state value.
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Output gate

Finally, we need to decide what we’re going to output. This output will be based on our cell 
state, but will be a filtered version. 

- First, compute the output gate which decides what parts of the cell state we’re going to 
output.

- We add a nonlinearity (tanh) to the cell and multiply it by the output gate, so that we only 
output the parts we decided to.
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Gated Recurrent Unit (GRU)

It combines the forget and input gates into a single “update gate.” It also merges the 
cell state and hidden state, and makes some other changes. The resulting model is 
simpler than standard LSTM models, and has been growing increasingly popular.

Learning Phrase Representations 
using RNN Encoder–Decoder for 
Statistical Machine Translation, 
Cho et. Al 2014

https://arxiv.org/pdf/1406.1078v3.pdf
https://arxiv.org/pdf/1406.1078v3.pdf
https://arxiv.org/pdf/1406.1078v3.pdf
https://arxiv.org/pdf/1406.1078v3.pdf
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Bidirectional Recurrent Neural Networks

When conditioning on a full input sequence, no obligation to only traverse left-to-right

Bidirectional RNNs exploit this observation 

- have one RNNs traverse the sequence left-to-right
- have another RNN traverse the sequence right-to-left
- use concatenation of hidden layers as feature representation
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One more issue: Hidden State initialization

- Need to specify the initial activations of the hidden units and output units. 
- Could initialize them to a fixed value (such as 0).
- Better to treat the initial state as learned parameters. 

- Learn these the same way we do with other model parameters: 
- Start off with random guesses of the initial state values.
- Backpropagate the prediction error through time all the way to the initial 

state values and compute the gradient of the error with respect to these 
initial state parameters.

- Update these parameters by following the negative gradient.
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