
Cognitive Robotics 2016/2017

Recurrent
Neural Networks

Cognitive Robotics

Marco Ciccone
Dipartimento di Informatica Elettronica e Bioingegneria

Politecnico di Milano

Cognitive Robotics 2016/2017

Cognitive Robotics 2016/2017

Outline

- Introduction
- Recurrent Neural Networks
- Vanishing and Exploding Gradient problem
- LSTM
- Applications

Cognitive Robotics 2016/2017

CNNs are good for images because
exploit their inherent spatial structure

Recap

Cognitive Robotics 2016/2017

Now we want to deal with sequential data

Cognitive Robotics 2016/2017

Feedforward Neural Networks treat
input samples independently of the others

Information is propagated from the inputs
to the outputs and only goes in one

direction

Cognitive Robotics 2016/2017

Autoregressive models

Predict the next input in a sequence from a fixed number of previous inputs using
“delay taps”.

Feed-forward neural networks

Generalize autoregressive models by using nonlinear hidden layers.

Memoryless models for sequences

input t-2 input t-1 input t

input t-2 input t-1 input t

Hidden

Cognitive Robotics 2016/2017

Beyond memoryless models

If we give add to a generative model some hidden state, and this hidden state has
its own internal dynamics (memory), we get a much more interesting kind of model
(State-Space models, Dynamical Systems…)

- It can store information in its hidden state for a long time.
- If the dynamics is noisy and the way it generates outputs from its hidden

state is noisy, we can never know its exact hidden state.
- The best we can do is to infer a probability distribution over the space of hidden

state vectors.

This inference is only tractable for two types of hidden state model!

Cognitive Robotics 2016/2017

Example 1: Linear Dynamical Systems

These are generative models.

They have a real valued hidden state that
cannot be observed directly.

- The hidden state has linear dynamics
with Gaussian noise and produces the
observations using a linear model with
Gaussian noise.

- (There may also be driving inputs)

To predict the next output we need to infer
the hidden state. How?

hidden

hidden

hidden

output

output

output

D
riving

Input

D
riving

Input

D
riving

Input

Time

Cognitive Robotics 2016/2017

A linearly transformed Gaussian is again Gaussian!

So the distribution over the hidden state given the
data so far is Gaussian.

It can be computed using “Kalman filtering”.

Cognitive Robotics 2016/2017

Example 2: Hidden Markov Models

Discrete state, arbitrary observation type

- State is not observed, must be inferred.
- Represent probability across N states with N

numbers.
- Efficient algorithms exist for HMM inference

(Viterbi Algorithm)

O
utput t-2

O
utput t-1

O
utput t

Time

Discrete Hidden States

Cognitive Robotics 2016/2017

RNNs properties

RNNs are very powerful, because they combine two properties:

- Distributed hidden state that allows them to store a lot of information about
the past efficiently.

- Nonlinear dynamics that allows them to update their hidden state in
complicated ways.

Cognitive Robotics 2016/2017

Stochastic vs Deterministic

Linear dynamical systems and hidden Markov models are stochastic models:

- But the posterior probability distribution over their hidden states given the
observed data so far is a deterministic function of the data.

Recurrent neural networks are deterministic models:

- You can think of the hidden state of an RNN as the equivalent of the
deterministic probability distribution over hidden states in a linear dynamical
system or hidden Markov model.

Cognitive Robotics 2016/2017

Remember Universal Approximation thm?
RNNs can do even more!

Cognitive Robotics 2016/2017

RNNs are Turing Complete!

With enough neurons and time, RNNs can
compute anything that can be computed

by a computer.
http://binds.cs.umass.edu/papers/
1995_Siegelmann_Science.pdf

http://binds.cs.umass.edu/papers/1995_Siegelmann_Science.pdf
http://binds.cs.umass.edu/papers/1995_Siegelmann_Science.pdf

Cognitive Robotics 2016/2017

Sequential data

Fixed-sized
input
to fixed-sized
output
(e.g. image
classification)

Sequence output
(e.g. image captioning
takes an image and
outputs a sentence of
words).

Sequence input (e.g.
sentiment analysis
where a given sentence
is classified as
expressing positive or
negative sentiment).

Sequence input and
sequence output (e.g.
Machine Translation: an
RNN reads a sentence
in English and then
outputs a sentence in
French)

Synced sequence
input and output (e.g.
video classification
where we wish to label
each frame of the
video)

Credits: Andrej Karpathy

Cognitive Robotics 2016/2017

Each one of these tasks can be
considered as a translation from one

signal to another

Cognitive Robotics 2016/2017

Even if your data are not sequential you
can decide to process them sequentially

Remark

Cognitive Robotics 2016/2017

Example: ReNet Layer

4 RNNs that scans the pixels of the image in
different directions:

- Top-Down + Bottom-Up
- Left-Right + Right-Left

Reference:

- ReNet, Visin et Al.
- ReSeg, Visin, Ciccone et Al.
- Code: https://github.com/fvisin/reseg

https://arxiv.org/abs/1505.00393
https://arxiv.org/pdf/1511.07053.pdf
https://github.com/fvisin/reseg

Cognitive Robotics 2016/2017

Recurrent Neural Networks (RNNs)

- We introduce the notion of sequentiality to the model
- RNNs extend classical Feed-forward NNs with feedback connections to the

hidden units.
- Through these connections the model can retain information about the past,

enabling it to discover correlations between input samples

Old state
new state

Parametric function

Input

Cognitive Robotics 2016/2017

Weight sharing through time steps

A recurrent neural network can be thought of as multiple copies of the same
network, each passing a message to a successor.

The same function and the same parameters are shared at every time step.

Unrolled view of a Recurrent Neural Network

Cognitive Robotics 2016/2017

An unrolled RNN can be seen as a Deep
Feedforward Neural Network

Remark

Cognitive Robotics 2016/2017

Backpropagation Through Time (BPTT)

Forward through entire sequence to compute loss, then backward through entire
sequence to compute gradient.

Gradients are obtained by applying chain rule on the unrolled graph

Image from
Karpathy’s
class CS231n

Cognitive Robotics 2016/2017

Truncated Backpropagation Through Time

Because of memory constraint if the sequence is very long we cannot
backpropagate through the entire sequence length.

Solution I: Run forward and backward through chunks of the sequence instead of
whole sequence

Solution II: Carry hidden states forward in time forever, but only backpropagate for
some smaller number of steps

Cognitive Robotics 2016/2017

Truncated Backpropagation Through Time I

Run forward and backward
through chunks of the
sequence

Image from
Karpathy’s
class CS231n

Cognitive Robotics 2016/2017

Truncated Backpropagation Through Time II

 Forward in time forever, but only
backpropagate for some smaller
number of steps

Image from
Karpathy’s
class CS231n

Cognitive Robotics 2016/2017

Learning long-term dependencies is hard

With internal state, the network can “remember” things for a long time.

Can decide to ignore input for a while if it wants to… BUT

- It is very hard to train an RNN to store information that’s not needed for
a long time.

- In principle, the internal state can carry information about a potentially
unbounded number of previous inputs.

Cognitive Robotics 2016/2017

Short-term dependencies

Where the gap between the relevant information and the place that it’s needed is
small, RNNs can learn to use the past information.

Cognitive Robotics 2016/2017

Long-term dependencies

Unfortunately, as that gap grows, RNNs become unable to learn to connect the
information.

Cognitive Robotics 2016/2017

Why training RNNs is hard?

- Vanishing gradient: the error signal from later time steps cannot go enough
back in time to influence the network at earlier time steps. This makes it difficult
to learn long-term dependencies making it impossible for the model to learn
correlation between temporally distant events.

- Exploding gradient: the error signal accumulates and explode

Cognitive Robotics 2016/2017

Vanishing and Exploding Gradient

Sorry for changing the
notation :)

Cognitive Robotics 2016/2017

Vanishing and Exploding Gradient

Max singular value

Cognitive Robotics 2016/2017

Vanishing and Exploding Gradient

Cognitive Robotics 2016/2017

Vanishing and Exploding Gradient

Considering the spectral radius:

- It is sufficient to be for long term components to vanish
- and necessary for for them to explode

Note: this result is true for linear functions, but can be generalized for nonlinear ones
using the max singular value

Cognitive Robotics 2016/2017

Vanilla RNN cell

The repeating module in a standard RNN contains a single layer

Cognitive Robotics 2016/2017

Naive (Not Working) Solution

Solution: We don’t have vanishing or exploding gradient but...

Problem: It’s not a very good memory, it’s just accumulating the input!

We need to know when and how much to read, input, output, forget….

Changing again the notation…
You can thank me later :)

Cognitive Robotics 2016/2017

An elegant solution

Long Short Term Memory, Sepp Hochreiter, J�urgen Schmidhuber, 1997
http://www.bioinf.jku.at/publications/older/2604.pdf

http://www.bioinf.jku.at/publications/older/2604.pdf

Cognitive Robotics 2016/2017

Long Short-Term Memory (LSTM)

The repeating module in an LSTM contains four interacting layers.

Cognitive Robotics 2016/2017

Cell Memory

The core idea of LSTM is to have a cell memory with only some minor linear
interactions. It’s very easy for information to just flow along it unchanged.

Cognitive Robotics 2016/2017

Gates

The LSTM does have the ability to remove or add information to the cell state,
carefully regulated by structures called gates

Gates are a way to optionally let information through

They are composed out of:

- a sigmoid neural net layer
- a pointwise multiplication operation

The sigmoid layer outputs numbers between zero and one, describing how much of
each component should be let through. A value of zero means “let nothing through,”
while a value of one means “let everything through!”

Cognitive Robotics 2016/2017

LSTM learns from data the behavior of the
gates

Cognitive Robotics 2016/2017

Forget Gate

Decide what (how much) information we’re going to throw away from the cell state
It uses a sigmoid where 1 represents “completely keep this” while a 0 represents
“completely get rid of this.”

Cognitive Robotics 2016/2017

Input Gate

Decide what new information we’re going to store in the cell state. This has two
parts:

- A sigmoid layer called the “input gate layer” decides which values we’ll update.

- A tanh layer creates a vector of new candidate values, C ̃t, that could be added
to the state.

Cognitive Robotics 2016/2017

Update memory cell

We need to update the old cell state, Ct−i into the new cell state Ct

- We multiply the old state by the forget gate, forgetting the things we decided to
forget earlier.

- Then we add the new candidate values, scaled by how much we decided to
update each state value.

Cognitive Robotics 2016/2017

Output gate

Finally, we need to decide what we’re going to output. This output will be based on our cell
state, but will be a filtered version.

- First, compute the output gate which decides what parts of the cell state we’re going to
output.

- We add a nonlinearity (tanh) to the cell and multiply it by the output gate, so that we only
output the parts we decided to.

Cognitive Robotics 2016/2017

Gated Recurrent Unit (GRU)

It combines the forget and input gates into a single “update gate.” It also merges the
cell state and hidden state, and makes some other changes. The resulting model is
simpler than standard LSTM models, and has been growing increasingly popular.

Learning Phrase Representations
using RNN Encoder–Decoder for
Statistical Machine Translation,
Cho et. Al 2014

https://arxiv.org/pdf/1406.1078v3.pdf
https://arxiv.org/pdf/1406.1078v3.pdf
https://arxiv.org/pdf/1406.1078v3.pdf
https://arxiv.org/pdf/1406.1078v3.pdf

Cognitive Robotics 2016/2017

Bidirectional Recurrent Neural Networks

When conditioning on a full input sequence, no obligation to only traverse left-to-right

Bidirectional RNNs exploit this observation

- have one RNNs traverse the sequence left-to-right
- have another RNN traverse the sequence right-to-left
- use concatenation of hidden layers as feature representation

Cognitive Robotics 2016/2017

One more issue: Hidden State initialization

- Need to specify the initial activations of the hidden units and output units.
- Could initialize them to a fixed value (such as 0).
- Better to treat the initial state as learned parameters.

- Learn these the same way we do with other model parameters:
- Start off with random guesses of the initial state values.
- Backpropagate the prediction error through time all the way to the initial

state values and compute the gradient of the error with respect to these
initial state parameters.

- Update these parameters by following the negative gradient.

Cognitive Robotics 2016/2017

Acknowledgements

This slides are highly based on material taken from:

- Jeoffrey Hinton
- Hugo Larochelle
- Andrej Karpathy
- Nando De Freitas
- Chris Olah

You can find more details on the original slides

The amazing images on LSTM cell are taken from Chris Hola’s blog:

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
48

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

