
Convolution arithmetic

Vincent Dumoulin, Francesco Visin

Institut
des algorithmes
d’apprentissage

de Montréal

Introduction
Why should I care?

● Convolutional neural networks
are not a new idea (LeCun et al.
did it in the nineties).

● CNNs started getting a lot of
traction when Krizhevsky et al.
used a deep CNN to achieve
SOTA on ImageNet in 2012.

● Used pretty extensively in
computer vision.

Learning to use
CNNs is an
intimidating
experience.

Complexity: NN vs. CNN

Fully-connected networks Convolutional neural networks

W.shape[1]

Output size Output shapeInput shape Strides

Kernel shape

Zero padding

Back to basics: discrete convolutions

● Kernel (shaded area) slides over the
input feature map (blue).

● At each kernel position, elementwise
product is computed between the
kernel and the overlapped input subset.
Result is summed up.

● Results constitute the output feature
map (cyan).

Back to basics: discrete convolutions

Properties affecting a discrete convolution:

● i : input size
● k : kernel size
● s : stride (distance between consecutive

positions of the kernel)
● p : zero padding (number of zeros

inserted at the beginning and at the end
of an axis)

i = 5, k = 3, s = 2, p = 1

Back to basics: pooling

Pooling: sliding a window over the input and
summarizing the content of the window as a single
number (e.g., average pooling, max pooling).

Properties affecting pooling:

● i : input size
● k : pooling window size
● s : stride (distance between consecutive

positions of the pooling window)

Average pooling

Max pooling

Convolution arithmetic

Counting kernel
positions

● Kernel starts at top left side of
the input

● Count the number of hops to go
to the right side

● Add 1 to account for the original
kernel position

● Repeat for the up-down axis

Yields

o = (i - k) + 1

Count the number of possible kernel positions in
both axes:

o = (i - k) + 1

No padding, no strides

i = 4, k = 3, s = 1, p = 0

o = (4 - 3) + 1 = 2

Zero padding changes the effective input size
(it adds 2p to the input size):

o = (i - k) + 2p + 1

Arbitrary padding, no strides

i = 5, k = 4, s = 1, p = 2

o = (5 - 4) + 2 * 2 + 1 = 6

Half (same) padding, no strides

If k is odd (k = 2n + 1), and if p = k // 2 = n, the
output size is equal to the input size:

o = (i - k) + 2p + 1
 = i - 2n - 1 + 2n + 1
 = i

i = 5, k = 3, s = 1, p = 1

o = (5 - 3) + 2 * 1 + 1 = 5

Full padding, no strides

If p = k - 1, the size increases by k - 1:

o = (i - k) + 2p + 1
 = i - (k - 1) + 2(k - 1)
 = i + (k - 1)

i = 5, k = 3, s = 1, p = 2

o = (5 - 3) + 2 * 2 + 1 = 7

What about those
pesky strides?

Counting kernel
positions
(strides)

● Kernel starts at top left side of
the input

● Count the number of hops of
size s to go to the right side

● Add 1 to account for the original
kernel position

● Repeat for the up-down axis

Yields

o = (i - k) // s + 1

No padding, strides

Count the number of possible kernel positions in both
axes:

o = (i - k) // s + 1

i = 5, k = 3, s = 2, p = 0

o = (5 - 3) //
2 + 1 = 2

Arbitrary padding, strides

Combine previous rule with the fact that zero
padding adds 2p to the input size:

o = (i + 2p - k) // s + 1

i = 5, k = 3, s = 2, p = 1

o = (5 + 2 * 1 - 3) //
2 + 1 = 3

Arbitrary padding, strides

Note: sometimes, i + 2p - k is not a multiple of s.

This means that for s > 1 multiple input sizes
share the same output size.

i = 5, k = 4, s = 1, p = 2

o = (5 - 4) + 2 * 2 + 1 = 6

Pooling arithmetic

Did you notice we
did not talk about
convolutions in the
previous section?

Freebie!

Transposed convolution arithmetic

Transposed
convolutions
What is it for, anyways?

Used for

● Gradient backpropagation
● Decoder layers in convolutional

autoencoder
● Project feature maps into a

higher-dimensional space
(upsampling)

Convolution: matrix view

A convolution can be represented as a sparse
and weight-sharing matrix.

Forward pass: 16-D→ C → 4-D

Backward pass: 4-D → CT → 16-D

Both computations share the same
connectivity pattern.

C =

Transposed convolution: matrix view

A transposed convolution swaps the forward and
backward passes.

Forward pass: 4-D→ CT → 16-D

Backward pass: 16-D → C → 4-D

In other words, a transposed convolution is the
gradient of some convolution with respect to its
input.

?

How can you wrap
your mind around
that?

Visualizing transposed convolutions

Transposed convolutions can be conceptualized in terms of convolutions by
processing the input in a clever fashion.

Convolution followed by
its transpose,

i = 4, k = 3, s = 1, p = 0

Convolution equivalent to the
transposed convolution,

i’ = 6, k = 3, s = 1, p = 0

[No padding, no strides]T

Equivalent convolution is defined by

k’ = k, s’ = 1, p’ = k - 1,

o’ = i’ + (k - 1)

k = 3, s = 1, p = 0

i’ = 2, k’ = 3, s’ = 1, p’ = 2

o’ = 2 + (3 - 1) = 4

Why zero
padding?

We are trying to match connectivity
patterns.

Zero padding lets the kernel move
fully over an input unit.

[Arbitrary padding, no strides]T

[No padding, no strides]T: equivalent convolution
adds zero padding.

[Arbitrary padding, no strides]T: equivalent
convolution removes padding.

Equivalent convolution is defined by

k’ = k, s’ = 1, p’ = k - p - 1,

o’ = i’ + (k - 1) - 2p k = 4, s = 1, p = 2

i’ = 6, k’ = 4, s’ = 1, p’ = 1

o’ = 2 + (3 - 1) = 4

[Half (same) padding, no strides]T

Equivalent convolution is [half padding, no strides]
itself!

k’ = k, s’ = 1, p’ = p,

o’ = i’

k = 3, s = 1, p = 1

i’ = 5, k’ = 3, s’ = 1, p’ = 1

o’ = 5

[Full padding, no strides]T

[No padding, no strides]T = [Full padding, no strides]

[Full padding, no strides]T = [No padding, no strides]

Equivalent convolution is defined by

k’ = k, s’ = 1, p’ = 0,

o’ = i’ - (k - 1)
k = 3, s = 1, p = 2

i’ = 7, k’ = 3, s’ = 1, p’ = 0

o’ = 7 - (3
 - 1) = 5

[No padding, strides]T

Equivalent convolution is defined by

k’ = k, s’ = 1, p’ = k - 1,

i’’ = (s - 1)(i’ - 1)
(we insert s - 1 zeros between inputs)

o’ = s(i’ - 1) + k k = 3, s = 2, p = 0

i’’ = 3, k’ = 3, s’ = 1, p’ = 2

o’ = 2(2 - 1) + 3 = 5

Why insert
zeros? We are trying to match connectivity

patterns.

Inserting zeros adds the needed
space to compensate for the strides.

[Arbitrary padding, strides]T

Equivalent convolution is defined by

k’ = k, s’ = 1, p’ = k - p - 1,

i’’ = (s - 1)(i’ - 1)
(we insert s - 1 zeros between inputs)

o’ = s(i’ - 1) + k - 2p k = 3, s = 2, p = 1

i’’ = 5, k’ = 3, s’ = 1, p’ = 1

o’ = 2(3 - 1) + 3 - 2 = 5

[Arbitrary padding, strides]T

Equivalent convolution is defined by

k’ = k, s’ = 1, p’ = k - p - 1,

i’’ = (s - 1)(i’ - 1),

a = (i + 2p - k) mod s
(we insert s - 1 zeros between inputs)

o’ = s(i’ - 1) + a + k - 2p
k = 3, s = 2, p = 1,

i’’ = 5, k’ = 3, s’ = 1, p’ = 1, a = 1

o’ = 7 - (3
 - 1) = 5

Acknowledgements, guide and code

Many thanks to David Warde-Farley, Guillaume
Alain and Caglar Gulcehre for their valuable
feedback, as well as everyone else who offered
input after the guide was put on arXiv.

Special thanks to Ethan Schoonover, creator of
the Solarized color scheme, whose colors were
used for the figures.

You can find the guide on arXiv here:

http://arxiv.org/abs/1603.07285

You can find the code for the guide and the
figures here:

https://github.com/vdumoulin/conv_arithmetic

http://ethanschoonover.com/solarized
http://arxiv.org/abs/1603.07285
https://github.com/vdumoulin/conv_arithmetic

