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Introduction
Why should I care?

● Convolutional neural networks 
are not a new idea (LeCun et al. 
did it in the nineties).

● CNNs started getting a lot of 
traction when Krizhevsky et al. 
used a deep CNN to achieve 
SOTA on ImageNet in 2012.

● Used pretty extensively in 
computer vision.



Learning to use 
CNNs is an 
intimidating 
experience.



Complexity: NN vs. CNN
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Back to basics: discrete convolutions

● Kernel (shaded area) slides over the 
input feature map (blue).

● At each kernel position, elementwise 
product is computed between the 
kernel and the overlapped input subset. 
Result is summed up.

● Results constitute the output feature 
map (cyan).



Back to basics: discrete convolutions

Properties affecting a discrete convolution:

● i : input size
● k : kernel size
● s : stride (distance between consecutive 

positions of the kernel)
● p : zero padding (number of zeros 

inserted at the beginning and at the end 
of an axis)

i = 5, k = 3, s = 2, p = 1



Back to basics: pooling

Pooling: sliding a window over the input and 
summarizing the content of the window as a single 
number (e.g., average pooling, max pooling).

Properties affecting pooling:

● i : input size
● k : pooling window size
● s : stride (distance between consecutive 

positions of the pooling window)

Average pooling

Max pooling



Convolution arithmetic



Counting kernel 
positions

● Kernel starts at top left side of 
the input

● Count the number of hops to go 
to the right side

● Add 1 to account for the original 
kernel position

● Repeat for the up-down axis

Yields

o = (i - k) + 1



Count the number of possible kernel positions in 
both axes:

o = (i - k) + 1

No padding, no strides

i = 4, k = 3, s = 1, p = 0

o = (4 - 3) + 1 = 2



Zero padding changes the effective input size 
(it adds 2p to the input size):

o = (i - k) + 2p + 1

Arbitrary padding, no strides

i = 5, k = 4, s = 1, p = 2

o = (5 - 4) + 2 * 2 + 1 = 6



Half (same) padding, no strides

If k is odd (k = 2n + 1), and if p = k // 2 = n, the 
output size is equal to the input size:

o = (i - k) + 2p + 1
   = i - 2n - 1 + 2n + 1 
   = i

i = 5, k = 3, s = 1, p = 1

o = (5 - 3) + 2 * 1 + 1 = 5



Full padding, no strides

If p = k - 1, the size increases by k - 1:

o = (i - k) + 2p + 1
   = i - (k - 1) + 2(k - 1)
   = i + (k - 1)

i = 5, k = 3, s = 1, p = 2

o = (5 - 3) + 2 * 2 + 1 = 7



What about those 
pesky strides?



Counting kernel 
positions 
(strides)

● Kernel starts at top left side of 
the input

● Count the number of hops of 
size s to go to the right side

● Add 1 to account for the original 
kernel position

● Repeat for the up-down axis

Yields

o = (i - k) // s + 1



No padding, strides

Count the number of possible kernel positions in both 
axes:

o = (i - k) // s + 1

i = 5, k = 3, s = 2, p = 0

o = (5 - 3) // 
2 + 1 = 2



Arbitrary padding, strides

Combine previous rule with the fact that zero 
padding adds 2p to the input size:

o = (i + 2p - k) // s + 1

i = 5, k = 3, s = 2, p = 1

o = (5 + 2 * 1 - 3) // 
2 + 1 = 3



Arbitrary padding, strides

Note: sometimes, i + 2p - k is not a multiple of s.

This means that for s > 1 multiple input sizes 
share the same output size.

i = 5, k = 4, s = 1, p = 2

o = (5 - 4) + 2 * 2 + 1 = 6



Pooling arithmetic



Did you notice we 
did not talk about 
convolutions in the 
previous section?

Freebie!



Transposed convolution arithmetic



Transposed 
convolutions
What is it for, anyways?

Used for

● Gradient backpropagation
● Decoder layers in convolutional 

autoencoder
● Project feature maps into a 

higher-dimensional space 
(upsampling)



Convolution: matrix view

A convolution can be represented as a sparse 
and weight-sharing matrix.

Forward pass: 16-D→ C → 4-D

Backward pass: 4-D → CT → 16-D

Both computations share the same 
connectivity pattern.

C =



Transposed convolution: matrix view

A transposed convolution swaps the forward and 
backward passes.

Forward pass: 4-D→ CT → 16-D

Backward pass: 16-D → C → 4-D

In other words, a transposed convolution is the 
gradient of some convolution with respect to its 
input.

?



How can you wrap 
your mind around 
that?



Visualizing transposed convolutions

Transposed convolutions can be conceptualized in terms of convolutions by 
processing the input in a clever fashion.

Convolution followed by 
its transpose,

i = 4, k = 3, s = 1, p = 0

Convolution equivalent to the 
transposed convolution,

i’ = 6, k = 3, s = 1, p = 0



[No padding, no strides]T

Equivalent convolution is defined by

k’ = k,   s’ = 1,   p’ = k - 1,

o’ = i’ + (k - 1)

k = 3, s = 1, p = 0

i’ = 2, k’ = 3, s’ = 1, p’ = 2

o’ = 2 + (3 - 1) = 4



Why zero 
padding?

We are trying to match connectivity 
patterns.

Zero padding lets the kernel move 
fully over an input unit.



[Arbitrary padding, no strides]T

[No padding, no strides]T: equivalent convolution 
adds zero padding.

[Arbitrary padding, no strides]T: equivalent 
convolution removes padding.

Equivalent convolution is defined by

k’ = k,   s’ = 1,   p’ = k - p - 1,

o’ = i’ + (k - 1) - 2p k = 4, s = 1, p = 2

i’ = 6, k’ = 4, s’ = 1, p’ = 1

o’ = 2 + (3 - 1) = 4



[Half (same) padding, no strides]T

Equivalent convolution is [half padding, no strides] 
itself!

k’ = k,   s’ = 1,   p’ = p,

o’ = i’

k = 3, s = 1, p = 1

i’ = 5, k’ = 3, s’ = 1, p’ = 1

o’ = 5



[Full padding, no strides]T

[No padding, no strides]T = [Full padding, no strides]

[Full padding, no strides]T = [No padding, no strides]

Equivalent convolution is defined by

k’ = k,   s’ = 1,   p’ = 0,

o’ = i’ - (k - 1)
k = 3, s = 1, p = 2

i’ = 7, k’ = 3, s’ = 1, p’ = 0

o’ = 7 - (3
 - 1) = 5



[No padding, strides]T

Equivalent convolution is defined by

k’ = k,   s’ = 1,   p’ = k - 1,

i’’ = (s - 1)(i’ - 1)
(we insert s - 1 zeros between inputs)

o’ = s(i’ - 1) + k k = 3, s = 2, p = 0

i’’ = 3, k’ = 3, s’ = 1, p’ = 2

o’ = 2(2 - 1) + 3 = 5



Why insert 
zeros? We are trying to match connectivity 

patterns.

Inserting zeros adds the needed 
space to compensate for the strides.



[Arbitrary padding, strides]T

Equivalent convolution is defined by

k’ = k,   s’ = 1,   p’ = k - p - 1,

i’’ = (s - 1)(i’ - 1)
(we insert s - 1 zeros between inputs)

o’ = s(i’ - 1) + k - 2p k = 3, s = 2, p = 1

i’’ = 5, k’ = 3, s’ = 1, p’ = 1

o’ = 2(3 - 1) + 3 - 2 = 5



[Arbitrary padding, strides]T

Equivalent convolution is defined by

k’ = k,   s’ = 1,   p’ = k - p - 1,

i’’ = (s - 1)(i’ - 1),

a = (i + 2p - k) mod s
(we insert s - 1 zeros between inputs)

o’ = s(i’ - 1) + a + k - 2p
k = 3, s = 2, p = 1,

i’’ = 5, k’ = 3, s’ = 1, p’ = 1, a = 1

o’ = 7 - (3
 - 1) = 5
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