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What is PyTorch?

It’s a Python based scientific computing package targeted at two sets of audiences:

- A replacement for NumPy to use the power of GPUs
- a deep learning research platform that provides maximum flexibility and speed

import torch

x = torch.Tensor(5, 3)

print(x)
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Multiple syntaxes

Syntax 1

y = torch.rand(5, 3)

print(x + y)

Syntax 2

print(torch.add(x, y)) 

Addition: providing an output tensor as argument

result = torch.Tensor(5, 3)

torch.add(x, y, out=result)

print(result)

In-place

# adds x to y

y.add_(x)

print(y)

NOTE: all in-place operations have suffix _
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NumPy Bridge

Converting a Torch Tensor to a NumPy array and vice versa is a breeze.

Numpy => PyTorch

Import torch

import numpy as np

a = np.ones(5)

b = torch.from_numpy(a)

np.add(a, 1, out=a)

print(a)

print(b)

NOTE: The Torch Tensor and NumPy array will share their underlying memory locations, 

and changing one will change the other.

PyTorch => Numpy

import torch

a = torch.ones(5)

print(a)

b = a.numpy()

print(b)
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CUDA Tensors
# let us run this cell only if CUDA is available

if torch.cuda.is_available():

    x = x.cuda()

    y = y.cuda()

    x + y
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Autograd (Automatic Differentiation)
The autograd package provides automatic differentiation for all operations on Tensors. It is a define-by-run 
framework, which means that your backprop is defined by how your code is run, and that every single 
iteration can be different.

autograd.Variable is the central class of the package. 

It wraps a Tensor, and supports nearly all of operations defined on it. 

Once you finish your computation you can call .backward() and have all the gradients computed 
automatically.

You can access the raw tensor through the .data attribute, while the gradient w.r.t. this variable is 
accumulated into .grad.

PyTorch Variables have the same API as PyTorch tensors: (almost) any operation you can do on a 
Tensor you can also do on a Variable; the difference is that autograd allows you to automatically 
compute gradients.
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Autograd Example 
import torch

from torch.autograd import Variable

x = Variable(torch.ones(2, 2), requires_grad=True)

print(x)

y = x + 2

print(y)

print(y.grad_fn)

z = y * y * 3

out = z.mean()

print(z, out)

out.backward()

print(x.grad)

Try it on jupyter!
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Static vs Dynamic graph

Again we define a computational graph, and use automatic differentiation to 
compute gradients. 

- TF: Static graph
- The computational graph is defined once and then executed over and over again, possibly 

feeding different input data to the graph. 
- Graph is optimized upfront, before the execution.
- Loops requires specific operations (tf.scan)

- PyTorch: Dynamic graph
- Each forward pass defines a new computational graph.
- Easy control flow (Imperative mode makes loops easier).
- Easy to perform different operations for different data points.
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torch.nn package

Neural network module. 

Convenient way of encapsulating parameters, with helpers for moving them to GPU, 
exporting, loading, etc… 

>>> Container example

model = torch.nn.Sequential(

    torch.nn.Linear(D_in, H),

    torch.nn.ReLU(),

    torch.nn.Linear(H, D_out),

)
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import torch

from torch.autograd import Variable

import torch.nn as nn

import torch.nn.functional as F

class Net(nn.Module):

    def __init__(self):

        super(Net, self).__init__()

        # 1 input image channel, 

        # 6 output channels, 

        # 5x5 square convolution kernel

        self.conv1 = nn.Conv2d(1, 6, 5)

        self.conv2 = nn.Conv2d(6, 16, 5)

        # an affine operation: y = Wx + b

        self.fc1 = nn.Linear(16 * 5 * 5, 120)

        self.fc2 = nn.Linear(120, 84)

        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):

        # Max pooling over a (2, 2) window

        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))

        # If the size is a square 

     you can only specify a single number

        x = F.max_pool2d(F.relu(self.conv2(x)), 2)

        x = x.view(-1, self.num_flat_features(x))

        x = F.relu(self.fc1(x))

        x = F.relu(self.fc2(x))

        x = self.fc3(x)

        return x

    def num_flat_features(self, x):

        # all dimensions except the batch dimension 

        size = x.size()[1:]  

        num_features = 1

        for s in size:

            num_features *= s

        return num_features

Custom module
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net = Net()

print(net)

>>>>>

Net(

  (conv1): Conv2d (1, 6, kernel_size=(5, 5), stride=(1, 1))

  (conv2): Conv2d (6, 16, kernel_size=(5, 5), stride=(1, 1))

  (fc1): Linear(in_features=400, out_features=120)

  (fc2): Linear(in_features=120, out_features=84)

  (fc3): Linear(in_features=84, out_features=10)

)

The learnable parameters of a model are returned by  net.parameters()

params = list(net.parameters())

print(len(params))

print(params[0].size())  # conv1's .weight
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Mini-batches in torch.nn

torch.nn only supports mini-batches 

The entire torch.nn package only supports inputs that are a mini-batch of samples, and not a 

single sample.

For example, nn.Conv2d will take in a 4D Tensor of nSamples x nChannels x Height x Width.

If you have a single sample, just use input.unsqueeze(0) to add a fake batch dimension.



Deep Learning Phd Course

Loss function
output = net(input)

target = Variable(torch.arange(1, 11))  # a dummy target, for example

criterion = nn.MSELoss()

loss = criterion(output, target)

print(loss)

Now, if you follow loss in the backward direction, using it’s .grad_fn attribute, you will see a graph of computations that looks like 
this:

input -> conv2d -> relu -> maxpool2d -> conv2d -> relu -> maxpool2d

      -> view -> linear -> relu -> linear -> relu -> linear

      -> MSELoss

      -> loss

So, when we call loss.backward(), the whole graph is differentiated w.r.t. the loss, and all Variables in the graph will have their 
.grad Variable accumulated with the gradient.
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BackProp
To backpropagate the error all we have to do is to loss.backward(). 

You need to clear the existing gradients, otherwise gradients will be accumulated to existing gradients

Now we shall call loss.backward(), and have a look at conv1’s bias gradients before and after the backward.

net.zero_grad()     # zeroes the gradient buffers of all parameters

print('conv1.bias.grad before backward')

print(net.conv1.bias.grad)

loss.backward()

print('conv1.bias.grad after backward')

print(net.conv1.bias.grad)
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Gradients after backward
conv1.bias.grad before backward

Variable containing:

 0

 0

 0

 0

 0

 0

[torch.FloatTensor of size 6]

conv1.bias.grad after backward

Variable containing:

1.00000e-02 *

  7.4571

 -0.4714

 -5.5774

 -6.2058

  6.6810

  3.1632

[torch.FloatTensor of size 6]
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Update the weights

The simplest update rule used in practice is the Stochastic Gradient Descent (SGD):

weight = weight - learning_rate * gradient

It can be implements this using simple python code:

learning_rate = 0.01

for f in net.parameters():

    f.data.sub_(f.grad.data * learning_rate)
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Optimizers
However, as you use neural networks, you want to use various different update rules such as SGD, Nesterov-SGD, Adam, 
RMSProp, etc. To enable this, we built a small package: torch.optim that implements all these methods. Using it is very 
simple:

import torch.optim as optim

# create your optimizer

optimizer = optim.SGD(net.parameters(), lr=0.01)

# in your training loop:

optimizer.zero_grad()   # zero the gradient buffers

output = net(input)

loss = criterion(output, target)

loss.backward()

optimizer.step()    # Does the update
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That was easier!
Let’s open Jupyter again!
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