
Deep Learning Phd Course

PyTorch 101
Deep Learning PhD Course

2017/2018

Marco Ciccone
Dipartimento di Informatica Elettronica e Bioingegneria

Politecnico di Milano

Deep Learning Phd Course

What is PyTorch?

It’s a Python based scientific computing package targeted at two sets of audiences:

- A replacement for NumPy to use the power of GPUs
- a deep learning research platform that provides maximum flexibility and speed

import torch

x = torch.Tensor(5, 3)

print(x)

Deep Learning Phd Course

Multiple syntaxes

Syntax 1

y = torch.rand(5, 3)

print(x + y)

Syntax 2

print(torch.add(x, y))

Addition: providing an output tensor as argument

result = torch.Tensor(5, 3)

torch.add(x, y, out=result)

print(result)

In-place

adds x to y

y.add_(x)

print(y)

NOTE: all in-place operations have suffix _

Deep Learning Phd Course

NumPy Bridge

Converting a Torch Tensor to a NumPy array and vice versa is a breeze.

Numpy => PyTorch

Import torch

import numpy as np

a = np.ones(5)

b = torch.from_numpy(a)

np.add(a, 1, out=a)

print(a)

print(b)

NOTE: The Torch Tensor and NumPy array will share their underlying memory locations,

and changing one will change the other.

PyTorch => Numpy

import torch

a = torch.ones(5)

print(a)

b = a.numpy()

print(b)

Deep Learning Phd Course

CUDA Tensors
let us run this cell only if CUDA is available

if torch.cuda.is_available():

 x = x.cuda()

 y = y.cuda()

 x + y

Deep Learning Phd Course

Autograd (Automatic Differentiation)
The autograd package provides automatic differentiation for all operations on Tensors. It is a define-by-run
framework, which means that your backprop is defined by how your code is run, and that every single
iteration can be different.

autograd.Variable is the central class of the package.

It wraps a Tensor, and supports nearly all of operations defined on it.

Once you finish your computation you can call .backward() and have all the gradients computed
automatically.

You can access the raw tensor through the .data attribute, while the gradient w.r.t. this variable is
accumulated into .grad.

PyTorch Variables have the same API as PyTorch tensors: (almost) any operation you can do on a
Tensor you can also do on a Variable; the difference is that autograd allows you to automatically
compute gradients.

Deep Learning Phd Course

Autograd Example
import torch

from torch.autograd import Variable

x = Variable(torch.ones(2, 2), requires_grad=True)

print(x)

y = x + 2

print(y)

print(y.grad_fn)

z = y * y * 3

out = z.mean()

print(z, out)

out.backward()

print(x.grad)

Try it on jupyter!

Deep Learning Phd Course

Static vs Dynamic graph

Again we define a computational graph, and use automatic differentiation to
compute gradients.

- TF: Static graph
- The computational graph is defined once and then executed over and over again, possibly

feeding different input data to the graph.
- Graph is optimized upfront, before the execution.
- Loops requires specific operations (tf.scan)

- PyTorch: Dynamic graph
- Each forward pass defines a new computational graph.
- Easy control flow (Imperative mode makes loops easier).
- Easy to perform different operations for different data points.

Deep Learning Phd Course

torch.nn package

Neural network module.

Convenient way of encapsulating parameters, with helpers for moving them to GPU,
exporting, loading, etc…

>>> Container example

model = torch.nn.Sequential(

 torch.nn.Linear(D_in, H),

 torch.nn.ReLU(),

 torch.nn.Linear(H, D_out),

)

Deep Learning Phd Course

import torch

from torch.autograd import Variable

import torch.nn as nn

import torch.nn.functional as F

class Net(nn.Module):

 def __init__(self):

 super(Net, self).__init__()

 # 1 input image channel,

 # 6 output channels,

 # 5x5 square convolution kernel

 self.conv1 = nn.Conv2d(1, 6, 5)

 self.conv2 = nn.Conv2d(6, 16, 5)

 # an affine operation: y = Wx + b

 self.fc1 = nn.Linear(16 * 5 * 5, 120)

 self.fc2 = nn.Linear(120, 84)

 self.fc3 = nn.Linear(84, 10)

 def forward(self, x):

 # Max pooling over a (2, 2) window

 x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))

 # If the size is a square

 you can only specify a single number

 x = F.max_pool2d(F.relu(self.conv2(x)), 2)

 x = x.view(-1, self.num_flat_features(x))

 x = F.relu(self.fc1(x))

 x = F.relu(self.fc2(x))

 x = self.fc3(x)

 return x

 def num_flat_features(self, x):

 # all dimensions except the batch dimension

 size = x.size()[1:]

 num_features = 1

 for s in size:

 num_features *= s

 return num_features

Custom module

Deep Learning Phd Course

net = Net()

print(net)

>>>>>

Net(

 (conv1): Conv2d (1, 6, kernel_size=(5, 5), stride=(1, 1))

 (conv2): Conv2d (6, 16, kernel_size=(5, 5), stride=(1, 1))

 (fc1): Linear(in_features=400, out_features=120)

 (fc2): Linear(in_features=120, out_features=84)

 (fc3): Linear(in_features=84, out_features=10)

)

The learnable parameters of a model are returned by net.parameters()

params = list(net.parameters())

print(len(params))

print(params[0].size()) # conv1's .weight

Deep Learning Phd Course

Mini-batches in torch.nn

torch.nn only supports mini-batches

The entire torch.nn package only supports inputs that are a mini-batch of samples, and not a

single sample.

For example, nn.Conv2d will take in a 4D Tensor of nSamples x nChannels x Height x Width.

If you have a single sample, just use input.unsqueeze(0) to add a fake batch dimension.

Deep Learning Phd Course

Loss function
output = net(input)

target = Variable(torch.arange(1, 11)) # a dummy target, for example

criterion = nn.MSELoss()

loss = criterion(output, target)

print(loss)

Now, if you follow loss in the backward direction, using it’s .grad_fn attribute, you will see a graph of computations that looks like
this:

input -> conv2d -> relu -> maxpool2d -> conv2d -> relu -> maxpool2d

 -> view -> linear -> relu -> linear -> relu -> linear

 -> MSELoss

 -> loss

So, when we call loss.backward(), the whole graph is differentiated w.r.t. the loss, and all Variables in the graph will have their
.grad Variable accumulated with the gradient.

Deep Learning Phd Course

BackProp
To backpropagate the error all we have to do is to loss.backward().

You need to clear the existing gradients, otherwise gradients will be accumulated to existing gradients

Now we shall call loss.backward(), and have a look at conv1’s bias gradients before and after the backward.

net.zero_grad() # zeroes the gradient buffers of all parameters

print('conv1.bias.grad before backward')

print(net.conv1.bias.grad)

loss.backward()

print('conv1.bias.grad after backward')

print(net.conv1.bias.grad)

Deep Learning Phd Course

Gradients after backward
conv1.bias.grad before backward

Variable containing:

 0

 0

 0

 0

 0

 0

[torch.FloatTensor of size 6]

conv1.bias.grad after backward

Variable containing:

1.00000e-02 *

 7.4571

 -0.4714

 -5.5774

 -6.2058

 6.6810

 3.1632

[torch.FloatTensor of size 6]

Deep Learning Phd Course

Update the weights

The simplest update rule used in practice is the Stochastic Gradient Descent (SGD):

weight = weight - learning_rate * gradient

It can be implements this using simple python code:

learning_rate = 0.01

for f in net.parameters():

 f.data.sub_(f.grad.data * learning_rate)

Deep Learning Phd Course

Optimizers
However, as you use neural networks, you want to use various different update rules such as SGD, Nesterov-SGD, Adam,
RMSProp, etc. To enable this, we built a small package: torch.optim that implements all these methods. Using it is very
simple:

import torch.optim as optim

create your optimizer

optimizer = optim.SGD(net.parameters(), lr=0.01)

in your training loop:

optimizer.zero_grad() # zero the gradient buffers

output = net(input)

loss = criterion(output, target)

loss.backward()

optimizer.step() # Does the update

Deep Learning Phd Course

That was easier!
Let’s open Jupyter again!

Deep Learning Phd Course

Acknowledgements

Slides based on http://pytorch.org/tutorials/

http://pytorch.org/tutorials/

