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If you have questions regarding the 
course/projects drop me an email with 

[PHD_DL2018] in the subject

if '[PHD_DL2018]' in mail.subject:

    read email

else:

    ignore email
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Let’s start :-)
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DL frameworks

- Theano (Python)
- Caffe(2) (C, C++, Python, MATLAB, Command line)
- Torch (Lua, C, C++)
- MXNet (Python, R, C++, Julia)
- PyTorch (Python, C, C++)
- Tensorflow (C++, Python)

All of these frameworks have an interface (scripting) language 
to prototype faster and several backend depending on the 

device you use to train/deploy
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Which framework should I use? 

There’s no winner. 

It really depends what you like and what you have to do.

ONNX: open neural network exchange format

http://onnx.ai/

Train with X and deploy with Y.

http://onnx.ai/
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CUDNN Disclaimer

Most likely for your project you will need GPU(s) and 
CUDNN backend for GPU acceleration. 

(optimized kernels directly provided by NVIDIA)
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Github Distribution

Slide from “Stanford TensorFlow for DL Research course”
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Demand for TensorFlow learning materials

Slide from “Stanford TensorFlow for DL Research course”
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TF Levels

- Basic (Keras)
- Intermediate (custom modules)
- Advanced (Data parallelism on Multiple Devices)
- Pro (Distributed parallelism) 
- Inferno (Subgraphs on different devices)
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Cool, but what is TensorFlow?

  

“TensorFlow™ is an open source software library for 
numerical computation using data flow graphs.”

It’s not specific for Deep Learning, but it’s tightly coupled 
with it. In principle you can use it for any tensor operation.
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Graph Computation 

TensorFlow decouples definition of computations from execution

Graph from TensorFlow for Machine Intelligence and “Stanford TensorFlow for DL Research course”
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Graph Declaration

TF is NOT imperative (à la numpy)      [not entirely true now… see Eager Mode]

1. Define a graph of operations (Code)
2. Graph is built and optimized by TF (Pray)
3. Execute operations and feed the graph with actual data through tf.session() 

(Wait & Hope for results)

Pros and Cons:

+ The graph of operations allows to compute the gradient automagically without the need specify (code) 
the gradient of the operation (Automatic Differentiation tool).

+ Thanks to optimization techniques the resulting graph could be really fast and memory efficient.
- Debugging is a true nightmare if you don’t have enough experience: you’ll become “the debbbaggher”.
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Graph Declaration 

Slide from “Stanford TensorFlow for DL Research course”
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Graph Pros

Optimization 

- Automatic buffer reuse
- Constant folding
- Inter-op parallelism
- Automatic trade-off between compute and memory

Deployability

- Graph is an intermediate representation for models

Rewritable

- Experiment with automatic device placement or quantization

Slide from “Stanford TensorFlow for DL Research course”
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Graph Cons

Difficult to debug

- Errors are reported long after graph construction
- Execution cannot be debugged with pdb or print statements

Un-Pythonic

- Writing a TensorFlow program is an exercise in metaprogramming
- Control flow (e.g., tf.while_loop) differs from Python
- Can't easily mix graph construction with custom data structures

Slide from “Stanford TensorFlow for DL Research course”
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Again… Why graphs?

1. Save computation. Only run subgraphs 
that lead to the values you want to fetch.

2. Break computation into small, differential 
pieces to facilitate auto-differentiation.

3. Facilitate distributed computation. 
Spread the work across multiple CPUs, 
GPUs, TPUs, or other devices

4. Many common machine learning models 
are taught and visualized as directed 
graphs.

Slide from “Stanford TensorFlow for DL Research course”

E.g. AlexNet 2012, winner of 
ImageNet challenge 2012. The 
model was split in 2 GPUs to be 
able to train it.
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Before starting: Tensors

Tensors are just n-dimensional arrays

- 0-d tensor: scalar (number) 
- 1-d tensor: vector
- 2-d tensor: matrix
- And so on …

Note that in TF you are dealing with batch of data so for instance:

- Image are 4D batch x height x width x nchannels
- Sequences are 3D batch x sequence_lenght x nfeatures
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Shapes Disclaimer

With tensors computation, 99% of your bugs are 
going to be on shapes, so deal with it.
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“Desperation on terminal”, Ciccone November 2015
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Hello World TF

import tensorflow as tf

a = tf.add(3, 5)

print(a)

>> Tensor("Add:0", shape=(), dtype=int32)

5

3

a
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How to get the value of ``a``?

- Create a session, 
- assign it to variable sess so we can call it later
- Within the session, evaluate the graph to fetch the 

value of a

import tensorflow as tf

a = tf.add(3, 5)

with tf.Session() as sess:

    print(sess.run(a))

5

3

a
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tf.Session()

- A Session object encapsulates the environment in which Operation objects are 
executed, and Tensor objects are evaluated.

- Session will also allocate memory to store the current values of variables.

24
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tf.Graph()
to add operators to a graph, set it as default:

g = tf.Graph()

with g.as_default():

    x = tf.add(3, 5)

with tf.Session(graph=g) as sess:

    sess.run(x)

to handle the default graph:

g = tf.get_default_graph()

Warnings! 
- DO NOT mess with graphs!
- DO NOT use more than one graph per 

session!
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TF Operations

Slide from “Stanford TensorFlow for DL Research course”
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tf.constant
import tensorflow as tf

my_const = tf.constant([1.0, 2.0], name="my_const")

print(tf.get_default_graph().as_graph_def())

node {
  name: "my_const"
  op: "Const"
  attr {
    key: "dtype"
    value {
      type: DT_FLOAT
    }
  }
  attr {
    key: "value"
    value {
      tensor {
        dtype: DT_FLOAT
        tensor_shape {
          dim {
            size: 2
          }
        }
        tensor_content: 
"\000\000\200?\000\000\000@"
      }
    }
  }
}
versions {
  producer: 24
}
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tf.Variable

x = tf.Variable(...) 

x.initializer # init 

x.value() # read op 

x.assign(...) # write op 

x.assign_add(...) 

# and more

s = tf.Variable(2, name="scalar") 

m = tf.Variable([[0, 1], [2, 3]], name="matrix") 

W = tf.Variable(tf.zeros([784,10]))

WARNING!

- this old way is discouraged 
- TensorFlow recommends that we use the 

wrapper tf.get_variable, which allows 
for easy variable sharing
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tf.get_variable
tf.get_variable(

    name,

    shape=None,

    dtype=None,

    initializer=None,

    regularizer=None,

    trainable=True,

    collections=None,

    caching_device=None,

    partitioner=None,

    validate_shape=True,

    use_resource=None,

    custom_getter=None,

    constraint=None

)

s = tf.get_variable("scalar", initializer=tf.constant(2)) 

m = tf.get_variable("matrix", initializer=tf.constant([[0, 1], [2, 3]]))

W = tf.get_variable("big_matrix", shape=(784, 10),

                    initializer=tf.zeros_initializer())

With tf.get_variable, we can provide 
- variable’s internal name, 
- shape, 
- type
- initializer to give the variable its initial value. 

Note that when we use tf.constant as an initializer, we don’t 
need to provide shape.
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Variable initialization
You have to initialize a variable before using it, otherwise it will be raised: 

>> FailedPreconditionError: Attempting to use uninitialized value. 

To get a list of uninitialized variables, you can just print them out:

print(session.run(tf.report_uninitialized_variables()))

The easiest way is initialize all variables at once: 

with tf.Session() as sess:

sess.run(tf.global_variables_initializer())
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tf.assign

We can assign a value to a variable using tf.Variable.assign()

W = tf.Variable(10)

W.assign(100)

with tf.Session() as sess:

sess.run(W.initializer)

print(W.eval()) # >> 10

Why 10 and not 100? W.assign(100) doesn't assign the value 100 to W, but instead 
create an assign op to do that. For this op to take effect, we have to run this op in 
session. 

assign_op = W.assign(100)

with tf.Session() as sess:

sess.run(assign_op)

print(W.eval()) # >> 100
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tf.constant vs tf.Variable

Differences between a constant and a variable:

1. A tf.constant is an op. A tf.Variable is a class with multiple ops.
2. A constant's value is stored in the graph and replicated wherever the graph 

is loaded. A variable is stored separately, and may live on a parameter server.

In other words:
- Constants are stored in the graph definition. 
- When constants are memory expensive, such as a weight matrix with millions of 

entries, it will be slow each time you have to load the graph. 
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Control Dependencies

Sometimes, we have two or more independent ops and we'd like to specify which 
ops should be run first. 
In this case, we use tf.Graph.control_dependencies([control_inputs])

# your graph g have 5 ops: a, b, c, d, e

with g.control_dependencies([a, b, c]):

  # `d` and `e` will only run after `a`, `b`, and `c` have executed.

  d = ...

  e = …
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Example: Batch Normalization (BN)
- BN requires to update running statistics (mean, variance) after each training step.
- Unfortunately, the update_moving_averages operation is not a parent of train op (train_step) in the 

computational graph.
- Only the subgraph components relevant to train_step will be executed, so we will never update 

the moving averages! 

To get around this, we have to explicitly tell the graph:

Update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)

with tf.control_dependencies(update_ops):

    # Ensures that we execute the update_ops before performing the train_step

    train_step = tf.train.GradientDescentOptimizer(0.01).minimize(loss)
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Remember working with TF has 2 phases:

Phase 1: assemble a graph 

Phase 2: use a session to execute operations and evaluate variables in the graph

We can assemble the graphs first without knowing the values needed for computation. This is equivalent to defining the function of x, y 
without knowing the values of x, y.  For example: f(x, y) = 2x + y.

x, y are placeholders for the actual values.

With the graph assembled, we, or our clients, can later supply their own data when they need to execute the computation. To define a 
placeholder, we use:

a = tf.placeholder(tf.float32, shape=[3]) # a is placeholder for a vector of 3 elements

b = tf.constant([5, 5, 5], tf.float32)

c = a + b # use the placeholder as you would any tensor

a_value = [0,1,2] # this is numeric value, while `a` is symbolic

with tf.Session() as sess:

print(sess.run(c), feed_dict={a: a_value}) 

Data Feeding (OLD)
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Data Feeding 
After few versions finally, TF has a usable dataset API interface.

The tf.data API enables you to build complex input pipelines from simple, reusable pieces.

It allows to create dataset iterators to:

- Load from binary datasets
- Load from numpy
- Load from TFRecords (TF data format)

Take a look at the documentation, we’ll see examples.

https://www.tensorflow.org/programmers_guide/datasets

https://www.tensorflow.org/api_docs/python/tf/data


Deep Learning Phd Course

Tensorboard

Tool that allows to log scalar and histogram quantities. 

Helpful to track weights, gradients, losses of several experiments at the same time.
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Tensorboard
# Create model

def multilayer_perceptron(x, weights, biases):

    # Hidden layer with RELU activation

    layer_1 = tf.add(tf.matmul(x, weights['w1']), biases['b1'])

    layer_1 = tf.nn.relu(layer_1)

    # Create a summary to visualize the first layer ReLU activation

    tf.summary.histogram("relu1", layer_1)

    # Hidden layer with RELU activation

    layer_2 = tf.add(tf.matmul(layer_1, weights['w2']), biases['b2'])

    layer_2 = tf.nn.relu(layer_2)

    # Create another summary to visualize the second layer ReLU activation

    tf.summary.histogram("relu2", layer_2)

    # Output layer

    out_layer = tf.add(tf.matmul(layer_2, weights['w3']), biases['b3'])

    return out_layer
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Tensorboard 
def variable_summaries(var):

  """Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""

  with tf.name_scope('summaries'):

      mean = tf.reduce_mean(var)

      tf.summary.scalar('mean', mean)

      with tf.name_scope('stddev'):

          stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))

      tf.summary.scalar('stddev', stddev)

      tf.summary.scalar('max', tf.reduce_max(var))

      tf.summary.scalar('min', tf.reduce_min(var))

      tf.summary.histogram('histogram', var)
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Tensorboard

# Collect summaries

merged_summaries = tf.summary.merge_all()

train_writer = tf.summary.FileWriter(FLAGS.summaries_dir + '/train', sess.graph)

(...)

for i in range(FLAGS.max_iters):

    if i % 10 == 0:  # Train and Record summaries

        summary, _ = sess.run([merged_summaries, train_op], feed_dict=val_dict)

        test_writer.add_summary(summary, i)

    else:  # Just train

        _ = sess.run([train_op], feed_dict=val_dict)
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Let’s start with TF! 
Open Jupyter!

https://codeshare.io/ayQy0o
https://goo.gl/Kki8vT

https://codeshare.io/ayQy0o
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Project 
Recommendations
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Don’t be stupid

Deep Learning could be a real PITA. 

Finding bugs in a model is not always easy.

Code should be decoupled (but don’t over-engineered it):

- Data loading
- Training algorithm
- Model
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Don’t be stupid II

- Don’t even think to use Windows.
- Use Git to version your code.
- Learn how to use VIM.
- Learn how to use ssh.
- [Respect python PEP8]
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Logging and Experiments

- Use Tensorboard to inspect:
- Losses
- Gradients
- Weights norm and distributions

- Use FLAGS to parametrize your scripts
- Track all the hyperparameters for each experiment (+ Loss and metrics)
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“Optimization is easy when other people 
have found the hyper-parameter 

combination that works”
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