
Deep Learning Phd Course

TensorFlow 101
Deep Learning PhD Course

2017/2018

Marco Ciccone
Dipartimento di Informatica Elettronica e Bioingegneria

Politecnico di Milano

Deep Learning Phd Course

If you have questions regarding the
course/projects drop me an email with

[PHD_DL2018] in the subject

if '[PHD_DL2018]' in mail.subject:

 read email

else:

 ignore email

Deep Learning Phd Course

Let’s start :-)

Deep Learning Phd Course

DL frameworks

- Theano (Python)
- Caffe(2) (C, C++, Python, MATLAB, Command line)
- Torch (Lua, C, C++)
- MXNet (Python, R, C++, Julia)
- PyTorch (Python, C, C++)
- Tensorflow (C++, Python)

All of these frameworks have an interface (scripting) language
to prototype faster and several backend depending on the

device you use to train/deploy

Deep Learning Phd Course

Deep Learning Phd Course

Which framework should I use?

There’s no winner.

It really depends what you like and what you have to do.

ONNX: open neural network exchange format

http://onnx.ai/

Train with X and deploy with Y.

http://onnx.ai/

Deep Learning Phd Course

CUDNN Disclaimer

Most likely for your project you will need GPU(s) and
CUDNN backend for GPU acceleration.

(optimized kernels directly provided by NVIDIA)

Deep Learning Phd Course

Github Distribution

Slide from “Stanford TensorFlow for DL Research course”

Deep Learning Phd Course

Demand for TensorFlow learning materials

Slide from “Stanford TensorFlow for DL Research course”

Deep Learning Phd Course

TF Levels

- Basic (Keras)
- Intermediate (custom modules)
- Advanced (Data parallelism on Multiple Devices)
- Pro (Distributed parallelism)
- Inferno (Subgraphs on different devices)

Deep Learning Phd Course

Cool, but what is TensorFlow?

“TensorFlow™ is an open source software library for
numerical computation using data flow graphs.”

It’s not specific for Deep Learning, but it’s tightly coupled
with it. In principle you can use it for any tensor operation.

Deep Learning Phd Course

Graph Computation

TensorFlow decouples definition of computations from execution

Graph from TensorFlow for Machine Intelligence and “Stanford TensorFlow for DL Research course”

Deep Learning Phd Course

Graph Declaration

TF is NOT imperative (à la numpy) [not entirely true now… see Eager Mode]

1. Define a graph of operations (Code)
2. Graph is built and optimized by TF (Pray)
3. Execute operations and feed the graph with actual data through tf.session()

(Wait & Hope for results)

Pros and Cons:

+ The graph of operations allows to compute the gradient automagically without the need specify (code)
the gradient of the operation (Automatic Differentiation tool).

+ Thanks to optimization techniques the resulting graph could be really fast and memory efficient.
- Debugging is a true nightmare if you don’t have enough experience: you’ll become “the debbbaggher”.

Deep Learning Phd Course

Graph Declaration

Slide from “Stanford TensorFlow for DL Research course”

Deep Learning Phd Course

Graph Pros

Optimization

- Automatic buffer reuse
- Constant folding
- Inter-op parallelism
- Automatic trade-off between compute and memory

Deployability

- Graph is an intermediate representation for models

Rewritable

- Experiment with automatic device placement or quantization

Slide from “Stanford TensorFlow for DL Research course”

Deep Learning Phd Course

Graph Cons

Difficult to debug

- Errors are reported long after graph construction
- Execution cannot be debugged with pdb or print statements

Un-Pythonic

- Writing a TensorFlow program is an exercise in metaprogramming
- Control flow (e.g., tf.while_loop) differs from Python
- Can't easily mix graph construction with custom data structures

Slide from “Stanford TensorFlow for DL Research course”

Deep Learning Phd Course

Again… Why graphs?

1. Save computation. Only run subgraphs
that lead to the values you want to fetch.

2. Break computation into small, differential
pieces to facilitate auto-differentiation.

3. Facilitate distributed computation.
Spread the work across multiple CPUs,
GPUs, TPUs, or other devices

4. Many common machine learning models
are taught and visualized as directed
graphs.

Slide from “Stanford TensorFlow for DL Research course”

E.g. AlexNet 2012, winner of
ImageNet challenge 2012. The
model was split in 2 GPUs to be
able to train it.

Deep Learning Phd Course

Before starting: Tensors

Tensors are just n-dimensional arrays

- 0-d tensor: scalar (number)
- 1-d tensor: vector
- 2-d tensor: matrix
- And so on …

Note that in TF you are dealing with batch of data so for instance:

- Image are 4D batch x height x width x nchannels
- Sequences are 3D batch x sequence_lenght x nfeatures

Deep Learning Phd Course

Shapes Disclaimer

With tensors computation, 99% of your bugs are
going to be on shapes, so deal with it.

Deep Learning Phd Course

“Desperation on terminal”, Ciccone November 2015

Deep Learning Phd Course

Deep Learning Phd Course

Hello World TF

import tensorflow as tf

a = tf.add(3, 5)

print(a)

>> Tensor("Add:0", shape=(), dtype=int32)

5

3

a

Deep Learning Phd Course

How to get the value of ``a``?

- Create a session,
- assign it to variable sess so we can call it later
- Within the session, evaluate the graph to fetch the

value of a

import tensorflow as tf

a = tf.add(3, 5)

with tf.Session() as sess:

 print(sess.run(a))

5

3

a

Deep Learning Phd Course

tf.Session()

- A Session object encapsulates the environment in which Operation objects are
executed, and Tensor objects are evaluated.

- Session will also allocate memory to store the current values of variables.

24

Deep Learning Phd Course

tf.Graph()
to add operators to a graph, set it as default:

g = tf.Graph()

with g.as_default():

 x = tf.add(3, 5)

with tf.Session(graph=g) as sess:

 sess.run(x)

to handle the default graph:

g = tf.get_default_graph()

Warnings!
- DO NOT mess with graphs!
- DO NOT use more than one graph per

session!

Deep Learning Phd Course

TF Operations

Slide from “Stanford TensorFlow for DL Research course”

Deep Learning Phd Course

tf.constant
import tensorflow as tf

my_const = tf.constant([1.0, 2.0], name="my_const")

print(tf.get_default_graph().as_graph_def())

node {
 name: "my_const"
 op: "Const"
 attr {
 key: "dtype"
 value {
 type: DT_FLOAT
 }
 }
 attr {
 key: "value"
 value {
 tensor {
 dtype: DT_FLOAT
 tensor_shape {
 dim {
 size: 2
 }
 }
 tensor_content:
"\000\000\200?\000\000\000@"
 }
 }
 }
}
versions {
 producer: 24
}

Deep Learning Phd Course

tf.Variable

x = tf.Variable(...)

x.initializer # init

x.value() # read op

x.assign(...) # write op

x.assign_add(...)

and more

s = tf.Variable(2, name="scalar")

m = tf.Variable([[0, 1], [2, 3]], name="matrix")

W = tf.Variable(tf.zeros([784,10]))

WARNING!

- this old way is discouraged
- TensorFlow recommends that we use the

wrapper tf.get_variable, which allows
for easy variable sharing

Deep Learning Phd Course

tf.get_variable
tf.get_variable(

 name,

 shape=None,

 dtype=None,

 initializer=None,

 regularizer=None,

 trainable=True,

 collections=None,

 caching_device=None,

 partitioner=None,

 validate_shape=True,

 use_resource=None,

 custom_getter=None,

 constraint=None

)

s = tf.get_variable("scalar", initializer=tf.constant(2))

m = tf.get_variable("matrix", initializer=tf.constant([[0, 1], [2, 3]]))

W = tf.get_variable("big_matrix", shape=(784, 10),

 initializer=tf.zeros_initializer())

With tf.get_variable, we can provide
- variable’s internal name,
- shape,
- type
- initializer to give the variable its initial value.

Note that when we use tf.constant as an initializer, we don’t
need to provide shape.

Deep Learning Phd Course

Variable initialization
You have to initialize a variable before using it, otherwise it will be raised:

>> FailedPreconditionError: Attempting to use uninitialized value.

To get a list of uninitialized variables, you can just print them out:

print(session.run(tf.report_uninitialized_variables()))

The easiest way is initialize all variables at once:

with tf.Session() as sess:

sess.run(tf.global_variables_initializer())

Deep Learning Phd Course

tf.assign

We can assign a value to a variable using tf.Variable.assign()

W = tf.Variable(10)

W.assign(100)

with tf.Session() as sess:

sess.run(W.initializer)

print(W.eval()) # >> 10

Why 10 and not 100? W.assign(100) doesn't assign the value 100 to W, but instead
create an assign op to do that. For this op to take effect, we have to run this op in
session.

assign_op = W.assign(100)

with tf.Session() as sess:

sess.run(assign_op)

print(W.eval()) # >> 100

Deep Learning Phd Course

tf.constant vs tf.Variable

Differences between a constant and a variable:

1. A tf.constant is an op. A tf.Variable is a class with multiple ops.
2. A constant's value is stored in the graph and replicated wherever the graph

is loaded. A variable is stored separately, and may live on a parameter server.

In other words:
- Constants are stored in the graph definition.
- When constants are memory expensive, such as a weight matrix with millions of

entries, it will be slow each time you have to load the graph.

Deep Learning Phd Course

Control Dependencies

Sometimes, we have two or more independent ops and we'd like to specify which
ops should be run first.
In this case, we use tf.Graph.control_dependencies([control_inputs])

your graph g have 5 ops: a, b, c, d, e

with g.control_dependencies([a, b, c]):

 # `d` and `e` will only run after `a`, `b`, and `c` have executed.

 d = ...

 e = …

Deep Learning Phd Course

Example: Batch Normalization (BN)
- BN requires to update running statistics (mean, variance) after each training step.
- Unfortunately, the update_moving_averages operation is not a parent of train op (train_step) in the

computational graph.
- Only the subgraph components relevant to train_step will be executed, so we will never update

the moving averages!

To get around this, we have to explicitly tell the graph:

Update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)

with tf.control_dependencies(update_ops):

 # Ensures that we execute the update_ops before performing the train_step

 train_step = tf.train.GradientDescentOptimizer(0.01).minimize(loss)

Deep Learning Phd Course

Remember working with TF has 2 phases:

Phase 1: assemble a graph

Phase 2: use a session to execute operations and evaluate variables in the graph

We can assemble the graphs first without knowing the values needed for computation. This is equivalent to defining the function of x, y
without knowing the values of x, y. For example: f(x, y) = 2x + y.

x, y are placeholders for the actual values.

With the graph assembled, we, or our clients, can later supply their own data when they need to execute the computation. To define a
placeholder, we use:

a = tf.placeholder(tf.float32, shape=[3]) # a is placeholder for a vector of 3 elements

b = tf.constant([5, 5, 5], tf.float32)

c = a + b # use the placeholder as you would any tensor

a_value = [0,1,2] # this is numeric value, while `a` is symbolic

with tf.Session() as sess:

print(sess.run(c), feed_dict={a: a_value})

Data Feeding (OLD)

Deep Learning Phd Course

Data Feeding
After few versions finally, TF has a usable dataset API interface.

The tf.data API enables you to build complex input pipelines from simple, reusable pieces.

It allows to create dataset iterators to:

- Load from binary datasets
- Load from numpy
- Load from TFRecords (TF data format)

Take a look at the documentation, we’ll see examples.

https://www.tensorflow.org/programmers_guide/datasets

https://www.tensorflow.org/api_docs/python/tf/data

Deep Learning Phd Course

Tensorboard

Tool that allows to log scalar and histogram quantities.

Helpful to track weights, gradients, losses of several experiments at the same time.

Deep Learning Phd Course

Tensorboard
Create model

def multilayer_perceptron(x, weights, biases):

 # Hidden layer with RELU activation

 layer_1 = tf.add(tf.matmul(x, weights['w1']), biases['b1'])

 layer_1 = tf.nn.relu(layer_1)

 # Create a summary to visualize the first layer ReLU activation

 tf.summary.histogram("relu1", layer_1)

 # Hidden layer with RELU activation

 layer_2 = tf.add(tf.matmul(layer_1, weights['w2']), biases['b2'])

 layer_2 = tf.nn.relu(layer_2)

 # Create another summary to visualize the second layer ReLU activation

 tf.summary.histogram("relu2", layer_2)

 # Output layer

 out_layer = tf.add(tf.matmul(layer_2, weights['w3']), biases['b3'])

 return out_layer

Deep Learning Phd Course

Tensorboard
def variable_summaries(var):

 """Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""

 with tf.name_scope('summaries'):

 mean = tf.reduce_mean(var)

 tf.summary.scalar('mean', mean)

 with tf.name_scope('stddev'):

 stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))

 tf.summary.scalar('stddev', stddev)

 tf.summary.scalar('max', tf.reduce_max(var))

 tf.summary.scalar('min', tf.reduce_min(var))

 tf.summary.histogram('histogram', var)

Deep Learning Phd Course

Tensorboard

Collect summaries

merged_summaries = tf.summary.merge_all()

train_writer = tf.summary.FileWriter(FLAGS.summaries_dir + '/train', sess.graph)

(...)

for i in range(FLAGS.max_iters):

 if i % 10 == 0: # Train and Record summaries

 summary, _ = sess.run([merged_summaries, train_op], feed_dict=val_dict)

 test_writer.add_summary(summary, i)

 else: # Just train

 _ = sess.run([train_op], feed_dict=val_dict)

Deep Learning Phd Course

Let’s start with TF!
Open Jupyter!

https://codeshare.io/ayQy0o
https://goo.gl/Kki8vT

https://codeshare.io/ayQy0o

Deep Learning Phd Course

Project
Recommendations

Deep Learning Phd Course

Don’t be stupid

Deep Learning could be a real PITA.

Finding bugs in a model is not always easy.

Code should be decoupled (but don’t over-engineered it):

- Data loading
- Training algorithm
- Model

Deep Learning Phd Course

Don’t be stupid II

- Don’t even think to use Windows.
- Use Git to version your code.
- Learn how to use VIM.
- Learn how to use ssh.
- [Respect python PEP8]

Deep Learning Phd Course

Logging and Experiments

- Use Tensorboard to inspect:
- Losses
- Gradients
- Weights norm and distributions

- Use FLAGS to parametrize your scripts
- Track all the hyperparameters for each experiment (+ Loss and metrics)

Deep Learning Phd Course

“Optimization is easy when other people
have found the hyper-parameter

combination that works”

Deep Learning Phd Course

Acknowledgements

Slides based on https://web.stanford.edu/class/cs20si/

https://web.stanford.edu/class/cs20si/

