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Universal approximation theorem (Hornik, 1991):

“ A single hidden layer feedforward neural network can
approximate any measurable function to any desired degree of
accuracy on a compact set ”
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NNs as universal approximators

=xl

Images from Hugo Larochelle’s DL Summer School Tutorial
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NNs as universal approximators

What does it mean?

- Regardless of what function we are trying to learn, a large enough MLP will be
able to represent it.

- The theorem holds for linear, sigmoid, tanh and many other hidden layer
activation functions.

This is a good result, but it doesn’t mean there is a learning algorithm that
can find the necessary parameter values!
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NNs as universal approximators

INn the worse case, an exponential number of hidden units
may be required.

In summary, a feedforward network with a single layer is
sufficient to represent any function, but the layer may have to
be unfeasibly large and may fail to learn and generalize
correctly.
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And Deep Learning save us all...
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Deep Learning

- Deep learning aims at learning models with multilayer representations

- Multilayer (feedforward) neural network
- Multilayer graphical model (deep belief network, deep Boltzmmann machine)

-

- Each layer corresponds to a “distributed representation’’

- Units in layer are not mutually exclusive
- each unit is a separate feature of the input
- two units can be “active’ at the same time

- they do not correspond to a partitioning (clustering) of the inputs
- in clustering, an input can only belong to a single cluster
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Distributed Representation |

- Itis possible to represent exponential number of regions with a linear number of
parameters.

- In non-distributed representations, the number of parameters are linear to the
number of regions.

- Here, the number of regions potentially grow exponentially with the number of

parameters and number of examples.
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Deep Learning - Theoretical justification

A deep architecture can represent certain functions (exponentially) more compactly

Instead of growing our network wider, we grow it deeper

References

- "Learning Deep Architectures for Al", Yoshua Bengio, 2009

- "Exploring Strateqgies for Training Deep Neural Networks", Larochelle et Al, 2009

- "Shallow vs. Deep Sum-Product Networks", Delalleau & bengio, 2011

- "On the number of response reqgions of deep feed forward networks with piece-wise linear activations",

Pascanu et Al, 2013



https://www.iro.umontreal.ca/~lisa/pointeurs/TR1312.pdf
http://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Fall.2016/pdfs/1111/jmlr10_larochelle.pdf
https://papers.nips.cc/paper/4350-shallow-vs-deep-sum-product-networks.pdf
http://arxiv.org/abs/1312.6098
http://arxiv.org/abs/1312.6098
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Distributed Representation |l

- Features are individually meaningful. They remain meaningful despite the other
features. There maybe some interactions but most features are learned
independent of each other.

- We don’t need to see all configurations to make a meaningful statement.

- Non-mutually exclusive features create a combinatorially large set of

distinguishable configurations.

10
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Deep Learning - Theoretical justification |

- Using deep architectures expresses a useful prior over the space of functions
the model learns.

- Encodes a very general belief that the function we want to learn should involve
composition of several simpler functions.

- We can interpret the learning problem as discovering a set of underlying factors
of variation that can in turn be described in terms of other, simpler underlying
factors of variation.

11
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Deep Learning - Example

Boolean functions

- A Boolean circuit is a sort of feed-forward network where hidden units
are logic gates (i.e. AND, OR or NOT functions of their arguments)

- Any Boolean function can be represented by a ‘‘single hidden layer”
Boolean circuit
- however, it might require an exponential number of hidden units

- It can be shown that there are Boolean functions which

- require an exponential number of hidden units in the single layer case
- require a polynomial number of hidden units if we can adapt the number of layers

12
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If the function we are trying to learn has a
particular characteristic obtained through
composition of many operations,

then it is better to approximate these functions
with a deep neural network.

13
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Remark

A deeper network does not correspond
to a higher capacity.

Deeper doesn’t mean we can represent more
functions.

14
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Plain Deep Neural Networks



Deep Learning Phd Course

Neural Networks, Vol. 1, pp. 119~130, 1988 ) 0893-6080/88 $3.00 + .00
Printed in the USA. All rights reserved. Copyright © 1988 Pergamon Press plc

ORIGINAL CONTRIBUTION

Neocognitron: A Hierarchical Neural Network Capable
of Visual Pattern Recognition

KUNIHIKO FUKUSHIMA
NHK Science and Technical Research Laboratories
(Received and accepted 15 September 1987)

Abstract—A neural network model for visual pattern recognition, called the “neocognitron,” was previously proposed
by the author. In this paper, we discuss the mechanism of the model in detail. In order to demonstrate the ability of
the neocognitron, we also discuss a pattern-recognition system which works with the mechanism of the neocognitron.
The system has been implemented on a minicomputer and has been trained to recognize handwritten numerals.

The neocognitron is a hierarchical network consisting of many layers of cells, and has variable connections
between the cells in adjoining layers. It can acquire the ability to recognize patterns by learning, and can be trained
to recognize any set of patterns. Afier finishing the process of learning, pattern recognition is performed on the basis
of similarity in shape between patterns, and is not affected by deformation, nor by changes in size, nor by shifts in
the position of the input patterns.

In the hierarchical network of the neocognitron, local features of the input pattern are extracted by the cells of a
lower stage, and they are gradually integrated into more global features. Finally, each cell of the highest stage
integrates all the information of the input pattern, and responds only to one specific pattern. Thus, the response of
the cells of the highest stage shows the final result of the pattern-recognition of the network. During this process of
extracting and integrating features, errors in the relative position of local features are gradually tolerated. The
operation of tolerating positional error a little at a time at each stage, rather than all in one step, plays an important
role in endowing the network with an ability to recognize even distorted patterns.
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Neucognitron

Neucognitron: a Hierarchical Neural Network Capable of Visual Pattern Recognition, Fukushima 1988



http://vision.stanford.edu/teaching/cs131_fall1415/lectures/Fukushima1988.pdf
http://www.youtube.com/watch?v=Qil4kmvm2Sw
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Neucognitron
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Several “cells” (S-cells and C-cells) extract and combine features at different levels.
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S-CELL PROCESSING

The output of an S-cell is given by

Kci-1
a; + Z yg‘ a((l’, K, k) . Uc{...;(ﬂ + v, K)
usi(n, k) = r;+ p[————— " — 1]
o+ IT;, - bi(k) + uy(n)
(1)
where
. {x if x20 5
x _
¥ 0 if x<0O. )

RELU in 1988!
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L eNet

C3:f. maps 16@10x10

C1: feature maps S4: f. maps 16@5x5

INPUT
30532 6@28x28

S2: f. maps
6@14x14

|
Full conAection ‘ Gaussian connections

Convolutions Subsampling Convolutions  Subsampling Full connection

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.
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- 60 Millions of parameters
- Much of them are in the FC layers (classifier)

AlexNet (2012) " Ussofropans

- Use of RELU

- Minibatch Gradient Descent with Momentum
First Deep CNN actually working - Data Augmentation
- Trained for about a week on NVIDIA GTX 580

| BN i
" ) s 3 -, \Q o g
rel 192 192 128 2048 2038 \dense
5 gy 18 [ ] [ ]
13 13 \ 13
s | * 3, \ EN S d 5
= X 15 3 13 13 dense dense
..... - 3[' i 1000
5 3 192 192 128 Max L ||
S't}ide Max 178 Max pooling 2048 2048
Uof 4 pooling pooling
3 28

AlexNet architecture may look weird because there are two different “streams”. This is because the training process
was so computationally expensive that they had to split the training onto 2 GPUs.

21
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ZF-Net (2013)

- Improvement of AlexNet with accurate tuning of the hyperparameters
- In the same paper Zeiler and Fergus present a method to visualize the filter
learned by the Network (DeconvNet).

image size 224 13 130 i 1< = 2
filter size 7 @3 ¢l3'
1 =384 1 w384 | 256
I N N N
lstride 2 3x3 max c
3x3drnax pool[ [ contras pool 4096 4096 class
Sies stride 2 units| | units| | softmax
\i 55 i >
2 6
Input Image '\2‘56 = =
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer6 Layer7 Output

22
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DeconvNet

Layer 2

Visualizations of Layer 1 and 2. Each layer illustrates 2 pictures, one which shows the filters themselves and one that shows what
part of the image are most strongly activated by the given filter. For example, in the space labled Layer 2, we have representations
of the 16 different filters (on the left)

23
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DeconvNet

24

Visualizations of Layers 3,4, and 5
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ConvNet Conﬁgﬁration
A A-LRN B C ( D ) E
11 weight 11 weight 13 weight 16 weight 16 weight 19 weight
layers layers layers layers layers layers
\/G G - 1 6 (2 O 1 4) input (224 x 224 RGB imagd)
conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
LRN conv3-64 conv3-64 conv3-64 conv3-64
maxpool
conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128
USG SXS kernels conv3-128 | conv3-128 | conv3-128 | conv3-128
Block of stacked 3 conv layers have an TEpH0|
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
effective receptive field of 7x7 but less conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
) . convl-256 | conv3-256 | conv3-256
parameters (+3 nonlinearities) conv3-256
. _ maxpool
Today we have a nice efficient 3x3 conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
. . conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convolution (Winograd) convl-512 | conv3-512 | conv3-512
3-512
Lots of parameters 140 M (Most of T o
: conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
them are in the FC Layers) conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
Extracts very general and transferable Cangl-512 || COMMGERIZ, | PoRe 12
\_ J| conv3-512
features POl
FC-4096
- FC Layers are redundant and can be ﬁg‘;ggg
removed (without loss of accuracy) sofi-max

- The structure can be used for other
tasks such as Semantic Segmentation

Table 2: Number of parameters (in millions).
Network A,A-LRN B @ D E
Number of parameters 133 133 | 134 | 138 | 144
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Recall on CNNs

32 x 32 x 3 image 5 x 5 x 3 filter

,wT The kernel is convolved with the
image i.e. slide the filter over all the
input locations and compute the dot
product

>® The result of the dot product between

T the elements of the kernel (weights)
W T+ b and the small region of the input is one
number.

— This is a local linear combination of
the input features.

26
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Recall on CNNs

32 x 32 x 3 image

5x 5 x 3 filter
’UJT
00—
28
wlz +b

The result of the convolution between
the input and the kernel is called
“feature map” or “activation map”

Note:

Depending on the type of convolution,
the feature maps have a different size:

- VALID (n-k+1)

- SAME
- FULL (n +k -1)

27
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Recall on CNNs

32 x 32 x 3 image 5 x 5 x 3 filter
wT
—Q0 —
28
wlz +b

28

Each color corresponds to a different
filter that:

- Shares its parameters among
all the locations of the input

- Extracts a different feature
independently on the location in
which is applied

The result of the convolution between the
input and a kernel gives a feature map.

28
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Recall on CNNs

32 x 32 x 3 image 5 x 5 x 3 filter
’LUT
00—
28
wlz +b

Each color corresponds to a different
filter that:

- Shares its parameters among all the
locations of the input

- And extract a different feature
independently on the location in
which is applied

The result of the convolution between the
input and a kernel gives a feature map.

29
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Recall on CNNs

32 x 32 x 3 image

wlz +b

CNNSs learn many different filters:

Each one is specialized in extracting a specific feature in the image.

5 x 5 x 3 filter

w

T

—) —
28

28

E.Q.
256 feature maps

Each multidimensional filter linearly combines the input (locally) and produce a feature map.

30
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Network in Network (NiN)

Use 1x1 Convolutions

* / —l Activation

32x32x64 1x1x64
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1x1 Convolution

e [t combines features over the channel dimension

e [t’s a fully connected over the channel dimension applied in convolutional way

e Useful for (nonlinear) dimensionality reduction: apply convolution on all the input
channels, but have less filters producing less feature maps.

1x1 conv

—>

32 x 32 x 64 32x32x16
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GoogleNet (2014)

- Used 9 Inception modules in the whole architecture, with over 100 layers in totall Now that is deep...

- No use of fully connected layers! They use an average pool instead, to go from a 7x7x1024 volume to a
1x1x1024 volume. This saves a huge number of parameters.

- Uses 12x fewer parameters than AlexNet (4 Millions)

- At test time, multiple crops of the same image were created, fed into the network, and the softmax
probabilities were averaged to give us the final solution.

- There are several updated versions to the Inception module (Versions 6 and 7).

33



Deep Learning Phd Course

Inception module

GooglLeNet was one of the first models that introduced the idea that CNN layers didn’t always have to be
stacked up sequentially.

Coming up with the Inception module, the authors showed that a creative structuring of layers can lead to
improved performance and computationally efficiency.

< Filter
Filter 3
concatenation concatenation
3x3 convolutions 5x5 convolutions 1x1 convolutions
1x1 convolutions 3x3 convolutions 5x5 convolutions 3x3 max pooling
1x1 convolutions [} [} [}

Naive idea of an Inception module

Previous layer

ﬂuﬁons

Full Inception module

1x1 convolutions

Previous layer

3x3 max pooling

et e

34
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Training a Deep Neural Network is hard

Optimization is harder (underfitting)

- Vanishing gradient problem
- Saturated units block gradient
propagation

This is a well known problem in recurrent
neural networks (we’ll see in a few lectures)

35
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Skip Connections
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U-net

64 64
128 64 64 2
input output
image |[»|{» > .
tle ™1™ ™| segmentation
3 & map
ol ol o X xJ x|
5518 g g
a o] &
N | Of ©
~| S ©
[Te] NTe] BT?)
' 128 128
256 128
A.1. Ng ol O
NE E e

' 256 256

512 256 t

¥ R =>conv 3x3, ReLU
TTAS S - copy and crop
1024 512
5 Ml # max pool 2x2
3 b 4 up-conv 2x2
& =» conv 1x1

Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue
box corresponds to a multi-channel feature map. The number of channels is denoted
on top of the box. The x-y-size is provided at the lower left edge of the box. White
boxes represent copied feature maps. The arrows denote the different operations.
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Additive Compositional Layers
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Highway Networks

T: Transform Gate C: Carry Gate

y = H(X,WH)'T(X, WT) + X - C(x, WC).

y=H(x,Wx)-T(x,Wr)+x-(1-T(x,Wr)).

CoupledgatesC=1-T

[x if T(x, W) =0, gy T, if T'(x, Wr) = 0,
Y T\ H(x, Wx), ifT(x,Wr)=1. dx | H'(x, W), if T(x,Wr)=1.

Highway Networks, Srivastava et al (2015)
Training Very Deep Networks, Srivastava et al (2015)



https://arxiv.org/abs/1505.00387
https://arxiv.org/abs/1507.06228

Deep Learning Phd Course

Highway Networks

10° | Depth 10 1 F Depth 20 1 F Depth 50 3 Depth 100 1

— plain
— highway|]

Mean Cross Entropy Error

! !

1 ] 1 1 1 1 1 L 1 1 1 1 1 i 1 1 1 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 4000 50 100 150 200 250 300 350 4000 50 100 150 200 250 300 350 4000 50 100 150 200 250 300 350 400
Number of Epochs Number of Epochs Number of Epochs Number of Epochs

Figure 1. Comparison of optimization of plain networks and highway networks of various depths. All networks were optimized using
SGD with momentum. The curves shown are for the best hyperparameter settings obtained for each configuration using a random
search. Plain networks become much harder to optimize with increasing depth, while highway networks with up to 100 layers can still
be optimized well.
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From http://people.idsia.ch/~rupesh/very deep learning/

]

“This project presents a different take on the problem.

We simply redesign neural networks in a way that makes them
easier to optimize even for very large depths.”


http://people.idsia.ch/~rupesh/very_deep_learning/
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Residual Networks (ResNet)

X
weight layer

F(x) l relu .
weight layer identity

Figure 2. Residual learning: a building block.

Deep Residual Learning for Image Recognition, He et al (2015)



https://arxiv.org/abs/1512.03385
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Residual Networks (ResNet)
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Remember:

Deeper doesn’t mean better!
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Wide ResNet

X X X X]
| convlxl | \ | conv3x3 |
| conv3x3 | |
conv3x3 1 | dropout |
| conv3x3 | !
’ convlxl | | conv3x3 |
09
I+1 I+1 I+1 I+1
(a) basic (b) bottleneck (c) basic-wide (d) wide-dropout

Figure 1: Various residual blocks used in the paper. Batch normalization and ReLU precede
each convolution (omitted for clarity)

Wide Residual Networks, Zagoruyko ad Komodakis 2016



https://arxiv.org/abs/1605.07146
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Wide ResNet
group name | output size | block type = B(3,3)
convl 32x32 | [3x3,16]
3x3, 16 xk
conv2 32% 32 | 3x3,16xk | XN
[ 3x3,32xk |
conv3 16x16 | 3x3,32xk | XN
[ 3x3, 64xk |
conv4 8% 8 | 3x3, 64k | XN
avg-pool Ix1 [8 x 8]

Increase the number of filters by a widening factor k, rather than depth
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Wide ResNet yide" racter

depth-k  # params CIFAR-10 CIFAR-100

NIN [0 881 35.67
DSN [[9] 8.22 34.57
FitNet [I2] 8.39 35.04
Highway [I3] 7.72 32.39
ELU [H] 6.55 24.28
» 110 17M 6.43 25.16
OO ReSNSIEl | yone ygom 7.93 27.82
110 17M 5.23 24,58
Stog-depthliES] 1202 102M 491 ;
110 1M 6.37 -
pre-act-ResNet[[d] 164 1.7M 5.46 24.33
1001 102M  4.92(4.64) 2271
404 8.9M 453 21.18
WRN (ours) 16-8  11.0M 4.27 20.43

28-10 36.5M 4.00 19.25
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DenseNet

L(L+1) / 2 direct connections

Densely Connected Convolutional Networks, Huang et al 2016



https://arxiv.org/abs/1608.06993
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DenseNet (1988)

output unit

5 O

T30

+ [OO0OD
L
S

layer 3 Q}‘ O O O O hidden units

T

2 [Q0O000
} L

1 ® @

input units

Lang, K. J., and Witbrock. M. (1988). “Learning to Tell Two Spirals Apart.” In Proc. of 1988 Connectionist Models

ummer School


https://www.researchgate.net/publication/269337640_Learning_to_Tell_Two_Spirals_Apart
https://www.researchgate.net/publication/269337640_Learning_to_Tell_Two_Spirals_Apart
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Stochastic Depth Net

1.0 0.9 0.8 0.7 0.6 0.5

Fig. 2. The linear decay of p, illustrated on a ResNet with stochastic depth for pp =1
and pr, = 0.5. Conceptually, we treat the input to the first ResBlock as Hy, which is
always active.

Deep Networks with Stochastic Depth, Huang et al (2015



https://arxiv.org/abs/1603.09382
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But what are this networks learning”
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Highway Network (Lesioning)

Lesioned Highway Layer Lesioned Highway Layer
1 1 10 20 30 40 50 o 1; 10 20 30 40 50
10 T T T T T 10 T T T T T
MNIST CIFAR-100
107
= =
o )
= =)
= =
> >
& 10t |
b= =]
=] 3 =]
o 107 | 5}
« @
@ @
o o
= S
O (&)
] g
] «©
) U
= i =
107 F
107
non-lesioned performance - ------------------------=-=-=--
5 | non-lesioned performance

10

Figure 4: Lesioned training set performance (y-axis) of the best 50-layer highway networks on
MNIST (left) and CIFAR-100 (right), as a function of the lesioned layer (x-axis). Evaluated on
the full training set while forcefully closing all the transform gates of a single layer at a time. The
non-lesioned performance is indicated as a dashed line at the bottom.
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Feature Refinement (ResNet block a)

It shows how the response of a single filter (unit) evolves over the three blocks of stage 1 in a 50-layer ResNet trained on
ImageNet.
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Feature Refinement (ResNet block b)

On the left of each visualization are the top 9 patches from the ImageNet validation set that maximally activated that filter.
To the right the corresponding guided backpropagation (Springenberg et al., 2014) visualizations are shown.
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Feature Refinement (ResNet block c¢)

Chu et al. (2017) observed: “[. . . ] residual layers of the same dimensionality learn features that get refined and sharpened



https://arxiv.org/pdf/1701.02362.pdf
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lterative Refinement (Loss)

Original Resnet on CIFAR-10 Single Representation Resnet on CIFAR-10 Avg-Pooling Resnet on CIFAR-10 wResnet on CIFAR-10
ien | £2:0 = i =2° =i -
<15 <2 04
=10 =1 =
o5 i E e
—_— :O —
0 10 20 30 40 50 0 2 4 6 8 0 5 10 15 20 2 8 0
Residual block index Residual block index Residual block index Residual block index

Figure 2: Average ratio of #? norm of output of residual block to the norm of the input of resid-
ual block for (left to right) original Resnet, single representation Resnet, avg-pooling Resnet, and
wideResnet on CIFAR-10. (Train and validation curves are overlapping.)

Residual Connections Encourage lterative Inference, Jastrzebski et al (2017)



https://arxiv.org/abs/1710.04773
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Recap

e Plain Deep Networks are hard to train due to gradient issues
e SKip connections are very good way of dealing with those problems
e This comes with interesting properties (and priors) that has to be studied
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Thanks for your attention.



